A317825 a(1) = 1, a(n) = 3*a(n/2) if n is even, a(n) = n - a(n-1) if n is odd.
1, 3, 0, 9, -4, 0, 7, 27, -18, -12, 23, 0, 13, 21, -6, 81, -64, -54, 73, -36, 57, 69, -46, 0, 25, 39, -12, 63, -34, -18, 49, 243, -210, -192, 227, -162, 199, 219, -180, -108, 149, 171, -128, 207, -162, -138, 185, 0, 49, 75, -24, 117, -64, -36, 91, 189, -132, -102, 161, -54, 115, 147, -84, 729, -664, -630, 697, -576
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16383
- Altug Alkan, A scatterplot of a(n) for n <= 2^15-1
- Altug Alkan, A scatterplot of f_e(n) for n <= 2^15-1
- Altug Alkan, A scatterplot of (A317825(n), abs(A318303(n)))
- Rémy Sigrist, A colored scatterplot of (A317825(n), abs(A318303(n))) for n = 1..2^20-1 (where the color is function of n)
Programs
-
Magma
[n eq 1 select 1 else IsEven(n) select 3*Self(n div 2) else n- Self(n-1): n in [1..80]]; // Vincenzo Librandi, Sep 03 2018
-
Mathematica
Nest[Append[#1, If[EvenQ[#2], 3 #1[[#2/2]], #2 - #1[[-1]] ]] & @@ {#, Length@ # + 1} &, {1}, 67] (* Michael De Vlieger, Aug 22 2018 *)
-
PARI
A317825(n) = if(1==n,n,if(!(n%2),3*A317825(n/2),n-A317825(n-1)));
-
Python
aa = [0] a,n = 0,0 while n < 16383: n = n+1 if n%2 == 0: a = 3*aa[n//2] else: a = n-a aa = aa+[a] print(n,a) # A.H.M. Smeets, Sep 01 2018
Formula
From A.H.M. Smeets, Sep 01 2018: (Start)
Sum_{i = 1..2*n-1} a(i) = n^2 for n >= 0.
Sum_{i = 1..2*n} a(i) = 3*a(n) + n^2 for n >= 0, a(0) = 0.
Sum_{i = 1..36*2^n} a(i) = 162*A085350(n) for n >= 0.
Lim_{n -> infinity} a(n)/n^2 = 0.
Lim_{n -> infinity} (Sum_{i = 1..n} a(i))/n^2 = 1/4. (End)
Comments