A318298 Numbers whose set of decimal digits coincides with the set of the indices of their prime factors.
12, 14, 154, 1196, 14112, 21888, 53625, 226512, 279174, 358435, 821142, 1222452, 1665664, 2228814, 2454375, 2614248, 2872116, 4425729, 5751746, 8653645, 9551256, 15261246, 19427226, 19644898, 19775998, 21271488, 27676935, 29591892, 29956212, 41878242, 45574144
Offset: 1
Examples
1196 is in the sequence because the prime factors are {2, 13, 23} = {prime(1), prime(6), prime(9)}, and 1196 contains the decimal digits 1, 6, 9.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory):nn:=10^8: for n from 1 to nn do: lst:={}:d:=factorset(n):n0:=nops(d): q:=convert(n,base,10):n1:=nops(q): p:=product(āq[i]ā, āiā=1..n1): if p<>0 then for i from 1 to n1 do : lst:=lst union {ithprime(q[i])}: od: if lst = d then print(n): else fi:fi: od:
-
Mathematica
ok[n_] := Block[{f = First /@ FactorInteger[n], d}, Last@f < 24 && Min[d = Union@ IntegerDigits@ n] > 0 && Prime[d] == f]; Select[Range[10^6], ok] (* Giovanni Resta, Aug 24 2018 *)
Comments