A318366 a(n) = Sum_{d|n} bigomega(d)*bigomega(n/d).
0, 0, 0, 1, 0, 2, 0, 4, 1, 2, 0, 8, 0, 2, 2, 10, 0, 8, 0, 8, 2, 2, 0, 20, 1, 2, 4, 8, 0, 12, 0, 20, 2, 2, 2, 24, 0, 2, 2, 20, 0, 12, 0, 8, 8, 2, 0, 40, 1, 8, 2, 8, 0, 20, 2, 20, 2, 2, 0, 34, 0, 2, 8, 35, 2, 12, 0, 8, 2, 12, 0, 52, 0, 2, 8, 8, 2, 12, 0, 40, 10, 2, 0, 34, 2, 2, 2, 20, 0, 34, 2, 8, 2, 2, 2
Offset: 1
Keywords
Examples
24 has 8 divisors, namely 1, 2, 3, 4, 6, 8, 12, 24, and four prime factors counted with multiplicity. The divisors have 0, 1, 1, 2, 2, 3, 3, 4 divisors respectively. So a(24) = 0 * (4 - 0) + 1 * (4 - 1) + 1 * (4 - 1) + 2 * (4 - 2) + 2 * (4 - 2) + 3 * (4 - 3) + 4 * (4 - 4) = 0 + 3 + 3 + 4 + 4 + 3 + 3 + 0 = 20. - _David A. Corneth_, Jan 12 2019
Links
Crossrefs
Programs
-
Maple
f:= proc(n) local F,G,t,x; F:= map(t -> t[2], ifactors(n)[2]); G:= unapply(normal(mul((1-x^(t+1))/(1-x), t = F)),x); (convert(F,`+`)-1)*D(G)(1) - (D@@2)(G)(1); end proc: map(f, [$1..100]); # Robert Israel, Jan 17 2019
-
Mathematica
Table[Sum[PrimeOmega[d] PrimeOmega[n/d], {d, Divisors[n]}], {n, 95}]
-
PARI
a(n) = sumdiv(n, d, bigomega(d)*bigomega(n/d)); \\ Michel Marcus, Aug 25 2018
-
PARI
a(n) = bn = bigomega(n); sumdiv(n, d, bd = bigomega(d); bd * (bn - bd)) \\ David A. Corneth, Jan 12 2019
Comments