cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318368 a(n) = Sum_{d|n} (-1)^(n/d+1)*d*2^(d-1).

Original entry on oeis.org

1, 3, 13, 27, 81, 183, 449, 987, 2317, 5043, 11265, 24399, 53249, 114243, 245853, 523227, 1114113, 2357175, 4980737, 10480587, 22020557, 46126083, 96468993, 201302799, 419430481, 872361987, 1811941645, 3757981275, 7784628225, 16105886823, 33285996545, 68718951387, 141733932045
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 24 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n/d + 1) d 2^(d - 1), {d, Divisors[n]}], {n, 33}]
    nmax = 33; Rest[CoefficientList[Series[Sum[k 2^(k - 1) x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 33; Rest[CoefficientList[Series[Log[Product[(1 + x^k)^(2^(k - 1)), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d+1)*d*2^(d-1)); \\ Michel Marcus, Aug 25 2018

Formula

G.f.: Sum_{k>=1} k*2^(k-1)*x^k/(1 + x^k).
L.g.f.: log(Product_{k>=1} (1 + x^k)^(2^(k-1))) = Sum_{n>=1} a(n)*x^n/n.
a(n) ~ n * 2^(n-1). - Vaclav Kotesovec, Aug 25 2018