cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A363425 G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(2*x^k) * x^k/k ).

Original entry on oeis.org

1, 1, 2, 10, 89, 1521, 50300, 3271556, 422093896, 108481853032, 55651639993132, 57043042723263188, 116881250986006852062, 478862542730584327952230, 3923320929876295358082556380, 64283613915707884845087288240332
Offset: 0

Views

Author

Seiichi Manyama, Jun 01 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, (-1)^(k+1)*subst(A, x, 2*x^k)*x^k/k)+x*O(x^n))); Vec(A);

Formula

A(x) = Sum_{k>=0} a(k) * x^k = Product_{k>=0} (1+x^(k+1))^(2^k * a(k)).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) * d * 2^(d-1) * a(d-1) ) * a(n-k).
Showing 1-1 of 1 results.