cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318443 Numerators of the sequence whose Dirichlet convolution with itself yields A018804, Pillai's arithmetical function: Sum_{k=1..n} gcd(k, n).

Original entry on oeis.org

1, 3, 5, 23, 9, 15, 13, 91, 59, 27, 21, 115, 25, 39, 45, 1451, 33, 177, 37, 207, 65, 63, 45, 455, 179, 75, 353, 299, 57, 135, 61, 5797, 105, 99, 117, 1357, 73, 111, 125, 819, 81, 195, 85, 483, 531, 135, 93, 7255, 363, 537, 165, 575, 105, 1059, 189, 1183, 185, 171, 117, 1035, 121, 183, 767, 46355, 225, 315, 133, 759, 225, 351, 141, 5369
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Comments

Because A018804 gets only odd values on primes, A046644 gives the sequence of denominators. Because both of those sequences are multiplicative, this is also.

Crossrefs

Cf. A018804, A046644 (denominators).
Cf. also A318444.

Programs

  • Mathematica
    a18804[n_] := Sum[n EulerPhi[d]/d, {d, Divisors[n]}];
    f[1] = 1; f[n_] := f[n] = 1/2 (a18804[n] - Sum[f[d] f[n/d], {d, Divisors[ n][[2 ;; -2]]}]);
    a[n_] := f[n] // Numerator;
    Array[a, 72] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    up_to = 16384;
    A018804(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ From A018804
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318443aux = DirSqrt(vector(up_to, n, A018804(n)));
    A318443(n) = numerator(v318443aux[n]);
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, (1-X)^(1/2)/(1-p*X))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A018804(n) - Sum_{d|n, d>1, d 1.
Sum_{k=1..n} A318443(k) / A046644(k) ~ sqrt(3/2)*n^2/Pi. - Vaclav Kotesovec, May 10 2025