cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318491 a(n) is the numerator of Sum_{d|n} Sum_{j|d} 1/j.

Original entry on oeis.org

1, 5, 7, 17, 11, 35, 15, 49, 34, 11, 23, 119, 27, 75, 77, 129, 35, 85, 39, 187, 5, 115, 47, 343, 86, 135, 142, 255, 59, 77, 63, 321, 161, 175, 33, 289, 75, 195, 63, 539, 83, 25, 87, 391, 374, 235, 95, 301, 162, 43, 245, 459, 107, 355, 23, 105, 91, 295, 119, 1309, 123, 315, 170, 769, 297
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 27 2018

Keywords

Examples

			1, 5/2, 7/3, 17/4, 11/5, 35/6, 15/7, 49/8, 34/9, 11/2, 23/11, 119/12, 27/13, 75/14, 77/15, 129/16, ...
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local d;
       numer(add(numtheory:-sigma(d)/d, d = numtheory:-divisors(n))) end proc:
    map(f, [$1..65]); # Robert Israel, Jan 13 2025
  • Mathematica
    Numerator[Table[Sum[DivisorSigma[-1, d], {d, Divisors[n]}], {n, 65}]]
    Numerator[Table[Sum[DivisorSigma[1, d]/d, {d, Divisors[n]}], {n, 65}]]
    Numerator[Table[Sum[d DivisorSigma[0, d], {d, Divisors[n]}]/n, {n, 65}]]
    nmax = 65; Rest[Numerator[CoefficientList[Series[Sum[DivisorSigma[1, k] x^k/(k (1 - x^k)), {k, 1, nmax}], {x, 0, nmax}], x]]]
    nmax = 65; Rest[Numerator[CoefficientList[Series[-Log[Product[(1 - x^k)^DivisorSigma[0, k], {k, 1, nmax}]], {x, 0, nmax}], x]]]
  • PARI
    a(n) = numerator(sumdiv(n, d, sumdiv(d, j, 1/j))); \\ Michel Marcus, Aug 28 2018

Formula

Numerators of coefficients in expansion of Sum_{k>=1} sigma(k)*x^k/(k*(1 - x^k)), where sigma(k) = sum of divisors of k (A000203).
Numerators of coefficients in expansion of -log(Product_{k>=1} (1 - x^k)^tau(k)), where tau(k) = number of divisors of k (A000005).
a(n) = numerator of Sum_{d|n} sigma(d)/d.
a(n) = numerator of (1/n)*Sum_{d|n} d*tau(d).
If p is a prime, a(p) = 2*p + 1.
Sum_{k=1..n} a(k)/A318492(k) ~ zeta(2) * n * (log(n) + 2*gamma - 1 + zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 25 2024