A318566 Number of non-isomorphic multiset partitions of multiset partitions of multisets of size n.
1, 6, 21, 104, 452, 2335, 11992, 66810, 385101, 2336352, 14738380, 96831730, 659809115, 4657075074, 33974259046, 255781455848, 1984239830571, 15839628564349, 129951186405574, 1094486382191624, 9453318070371926, 83654146992936350, 757769011659766015, 7020652591448497490
Offset: 1
Keywords
Examples
Non-isomorphic representatives of the a(3) = 21 multiset partitions of multiset partitions: {{{1,1,1}}} {{{1,1,2}}} {{{1,2,3}}} {{{1},{1,1}}} {{{1},{1,2}}} {{{1},{2,3}}} {{{2},{1,1}}} {{{1},{1},{1}}} {{{1},{1},{2}}} {{{1},{2},{3}}} {{{1}},{{1,1}}} {{{1}},{{1,2}}} {{{1}},{{2,3}}} {{{2}},{{1,1}}} {{{1}},{{1},{1}}} {{{1}},{{1},{2}}} {{{1}},{{2},{3}}} {{{2}},{{1},{1}}} {{{1}},{{1}},{{1}}} {{{1}},{{1}},{{2}}} {{{1}},{{2}},{{3}}}
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; dubnorm[m_]:=First[Union[Table[Map[Sort,m/.Rule@@@Table[{Union[Flatten[m]][[i]],Union[Flatten[m]][[perm[[i]]]]},{i,Length[perm]}],{0,2}],{perm,Permutations[Union[Flatten[m]]]}]]]; Table[Length[Union[dubnorm/@Join@@mps/@Join@@mps/@strnorm[n]]],{n,5}]
-
PARI
\\ See links in A339645 for combinatorial species functions. seq(n)={my(A=sExp(symGroupSeries(n))); NumUnlabeledObjsSeq(sCartProd(A, sExp(A)-1))} \\ Andrew Howroyd, Dec 30 2020
Extensions
Terms a(8) and beyond from Andrew Howroyd, Dec 30 2020