A319133 a(1) = a(2) = 1; for n > 2, a(n+2) = Sum_{d|n} tau(n/d)*a(d), where tau = number of divisors (A000005).
1, 1, 1, 3, 3, 8, 5, 16, 7, 29, 12, 41, 14, 76, 16, 92, 28, 142, 30, 185, 32, 268, 48, 298, 50, 466, 59, 500, 80, 683, 82, 817, 84, 1072, 114, 1134, 134, 1583, 136, 1649, 170, 2176, 172, 2444, 174, 3032, 239, 3134, 241, 4174, 254, 4353, 316, 5343, 318, 5815, 352, 7121, 418, 7287, 420, 9357, 422, 9527, 525
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..4240
- N. J. A. Sloane, Transforms
Programs
-
Mathematica
a[1] = a[2] = 1; a[n_] := a[n] = Sum[DivisorSigma[0, (n - 2)/d] a[d], {d, Divisors[n - 2]}]; Table[a[n], {n, 65}]
-
PARI
A319133(n) = if(n<=2,1,sumdiv(n-2,d,numdiv((n-2)/d)*A319133(d))); \\ (non-memoized implementation) - Antti Karttunen, Sep 11 2018
-
PARI
\\ Faster implementation: up_to = 4240; A319133list(up_to) = { my(u=vector(up_to)); u[1] = u[2] = 1; for(n=3, up_to, u[n] = sumdiv(n-2,d,numdiv((n-2)/d)*u[d])); (u); }; v319133 = A319133list(up_to); A319133(n) = v319133[n]; \\ Antti Karttunen, Sep 11 2018