A318623 a(n) = 2^phi(n) mod n.
0, 0, 1, 0, 1, 4, 1, 0, 1, 6, 1, 4, 1, 8, 1, 0, 1, 10, 1, 16, 1, 12, 1, 16, 1, 14, 1, 8, 1, 16, 1, 0, 1, 18, 1, 28, 1, 20, 1, 16, 1, 22, 1, 12, 1, 24, 1, 16, 1, 26, 1, 40, 1, 28, 1, 8, 1, 30, 1, 16, 1, 32, 1, 0, 1, 34, 1, 52, 1, 36, 1, 64, 1, 38, 1, 20, 1, 40, 1
Offset: 1
Examples
a(6) = 2^phi(6) mod 6 = 2^4 mod 6 = 4. a(18) = 2^phi(18) mod 18 = 2^6 mod 18 = 10.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[Modexp(2, EulerPhi(n), n): n in [1..110]]; // Vincenzo Librandi, Aug 02 2018
-
Mathematica
a[n_] = Mod[2^EulerPhi[n], n]; Array[a, 50] (* Stefano Spezia, Sep 01 2018 *) Table[PowerMod[2,EulerPhi[n],n],{n,80}] (* Harvey P. Dale, Nov 07 2021 *)
-
PARI
a(n) = lift(Mod(2, n)^(eulerphi(n)))
Formula
If n is a power of 2 then a(n) = 0; if n is an odd number > 1 then a(n) = 1; else, let n = 2^t*s, t > 0, s > 1 is an odd number, then a(n) = n - (s mod 2^t)^2 + 1.
Comments