cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318691 Number of series-reduced powerful uniform rooted trees with n nodes.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 3, 2, 3, 1, 6, 1, 5, 4, 8, 1, 11, 1, 15, 6, 13, 1, 26, 3, 24, 9, 36, 1, 50, 1, 58, 14, 67, 7, 107, 1, 105, 25, 160, 1, 213, 1, 245, 45, 291, 1, 443, 5, 492, 68, 644, 1, 851, 15, 1019, 106, 1263, 1, 1785, 1, 1986, 189, 2592, 26, 3426, 1, 4071, 292
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2018

Keywords

Comments

A series-reduced powerful uniform rooted tree with n nodes is a powerful uniform multiset (all multiplicities are equal to the same number > 1) of series-reduced powerful uniform rooted trees with a total of n-1 nodes.

Examples

			The a(19) = 11 series-reduced powerful uniform rooted trees with 19 nodes:
  (((ooo)(ooo))((ooo)(ooo)))
  ((oo(oo)(oo))(oo(oo)(oo)))
  ((oo)(oo)(oo)(oo)(oo)(oo))
  ((oo)(oo)(ooooo)(ooooo))
  ((ooo)(ooo)(oooo)(oooo))
  (oo(oo)(oo)(oooo)(oooo))
  ((ooooo)(ooooo)(ooooo))
  (ooo(oooo)(oooo)(oooo))
  ((oooooooo)(oooooooo))
  (oo(ooooooo)(ooooooo))
  (oooooooooooooooooo)
		

Crossrefs

Programs

  • Mathematica
    rurt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[rurt/@ptn]],And[Min@@Length/@Split[#]>=2,SameQ@@Length/@Split[#]]&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[rurt[n]],{n,10}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=vector(n)); v[1]=1; for(n=1, n-1, my(u=WeighT(v[1..n])); v[n+1] = sumdiv(n,d,u[d]) - u[n]); v} \\ Andrew Howroyd, Dec 09 2020

Formula

a(p+1) = 1 for prime p. - Andrew Howroyd, Dec 09 2020

Extensions

Terms a(51) and beyond from Andrew Howroyd, Dec 09 2020