A318691 Number of series-reduced powerful uniform rooted trees with n nodes.
1, 0, 1, 1, 1, 1, 2, 1, 3, 2, 3, 1, 6, 1, 5, 4, 8, 1, 11, 1, 15, 6, 13, 1, 26, 3, 24, 9, 36, 1, 50, 1, 58, 14, 67, 7, 107, 1, 105, 25, 160, 1, 213, 1, 245, 45, 291, 1, 443, 5, 492, 68, 644, 1, 851, 15, 1019, 106, 1263, 1, 1785, 1, 1986, 189, 2592, 26, 3426, 1, 4071, 292
Offset: 1
Keywords
Examples
The a(19) = 11 series-reduced powerful uniform rooted trees with 19 nodes: (((ooo)(ooo))((ooo)(ooo))) ((oo(oo)(oo))(oo(oo)(oo))) ((oo)(oo)(oo)(oo)(oo)(oo)) ((oo)(oo)(ooooo)(ooooo)) ((ooo)(ooo)(oooo)(oooo)) (oo(oo)(oo)(oooo)(oooo)) ((ooooo)(ooooo)(ooooo)) (ooo(oooo)(oooo)(oooo)) ((oooooooo)(oooooooo)) (oo(ooooooo)(ooooooo)) (oooooooooooooooooo)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
rurt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[rurt/@ptn]],And[Min@@Length/@Split[#]>=2,SameQ@@Length/@Split[#]]&],{ptn,IntegerPartitions[n-1]}]]; Table[Length[rurt[n]],{n,10}]
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} seq(n)={my(v=vector(n)); v[1]=1; for(n=1, n-1, my(u=WeighT(v[1..n])); v[n+1] = sumdiv(n,d,u[d]) - u[n]); v} \\ Andrew Howroyd, Dec 09 2020
Formula
a(p+1) = 1 for prime p. - Andrew Howroyd, Dec 09 2020
Extensions
Terms a(51) and beyond from Andrew Howroyd, Dec 09 2020
Comments