cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A318611 Number of series-reduced powerful rooted trees with n nodes.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 3, 3, 4, 4, 8, 5, 11, 10, 14, 14, 24, 18, 34, 32, 46, 45, 72, 60, 103, 96, 138, 137, 212, 184, 296, 282, 403, 397, 591, 539, 830, 798, 1125, 1119, 1624, 1519, 2253, 2195, 3067, 3056, 4341, 4158, 6004, 5897, 8145, 8164, 11397, 11090
Offset: 1

Views

Author

Gus Wiseman, Aug 30 2018

Keywords

Comments

A series-reduced rooted tree is powerful if either it is a single node, or the branches of the root all appear with multiplicities greater than 1 and are themselves series-reduced powerful rooted trees.

Examples

			The a(13) = 8 series-reduced powerful rooted trees:
  ((oo)(oo)(oo)(oo))
  ((ooo)(ooo)(ooo))
  (ooo(oo)(oo)(oo))
  ((ooooo)(ooooo))
  (oo(oooo)(oooo))
  (oooo(ooo)(ooo))
  (oooooo(oo)(oo))
  (oooooooooooo)
		

Crossrefs

Programs

  • Maple
    h:= proc(n, k, t) option remember; `if`(k=0, binomial(n+t, t),
          `if`(n=0, 0, add(h(n-1, k-j, t+1), j=2..k)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*h(a(i), j, 0), j=0..n/i)))
        end:
    a:= n-> `if`(n<2, n, b(n-1$2)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Aug 31 2018
  • Mathematica
    purt[n_]:=purt[n]=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]],Min@@Length/@Split[#]>1&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[purt[n]],{n,20}]
    (* Second program: *)
    h[n_, k_, t_] := h[n, k, t] = If[k == 0, Binomial[n + t, t],
         If[n == 0, 0, Sum[h[n - 1, k - j, t + 1], {j, 2, k}]]];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
         Sum[b[n - i*j, i - 1]*h[a[i], j, 0], {j, 0, n/i}]]];
    a[n_] := If[n < 2, n, b[n - 1, n - 1]];
    Array[a, 60] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)

Extensions

a(41)-a(56) from Alois P. Heinz, Aug 31 2018

A318689 Number of powerful uniform rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 11, 12, 19, 23, 35, 36, 63, 64, 98, 112, 173, 174, 291, 292, 473, 509, 791, 792, 1345, 1356, 2158, 2257, 3634, 3635, 6053, 6054, 9807, 10091, 16173, 16216, 26783, 26784, 43076, 43880, 70631, 70632, 114975, 114976, 184665, 186996, 298644, 298645, 481978, 482011
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2018

Keywords

Comments

A powerful uniform rooted tree with n nodes is either a single powerful uniform branch with n-1 nodes, or a powerful uniform multiset (all multiplicities are equal to the same number > 1) of powerful uniform rooted trees with a total of n-1 nodes.

Examples

			The a(8) = 12 powerful uniform rooted trees:
  (((((((o)))))))
  ((((((oo))))))
  (((((o)(o)))))
  ((((o))((o))))
  (((((ooo)))))
  (((o)(o)(o)))
  ((((oooo))))
  (((oo)(oo)))
  ((oo(o)(o)))
  (((ooooo)))
  ((oooooo))
  (ooooooo)
		

Crossrefs

Programs

  • Mathematica
    rurt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[rurt/@ptn]],Or[Length[#]==1,And[Min@@Length/@Split[#]>=2,SameQ@@Length/@Split[#]]]&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[rurt[n]],{n,15}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=vector(n)); v[1]=1; for(n=1, n-1, my(u=WeighT(v[1..n])); v[n+1] = sumdiv(n,d,u[d]) - u[n] + v[n]); v} \\ Andrew Howroyd, Dec 09 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 09 2020

A318692 Matula-Goebel numbers of series-reduced powerful uniform rooted trees.

Original entry on oeis.org

1, 4, 8, 16, 32, 49, 64, 128, 196, 256, 343, 361, 512, 1024, 1444, 2048, 2401, 2744, 2809, 4096, 6859, 8192, 11236, 16384, 16807, 17161, 17689, 32768, 38416, 51529, 54872, 65536, 68644, 70756, 96721, 117649, 130321, 131072, 137641, 148877, 206116, 262144
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. A positive integer n is a Matula-Goebel number of a series-reduced powerful uniform rooted tree iff either n = 1 or n is a squarefree number, whose prime indices are all Matula-Goebel numbers of series-reduced powerful uniform rooted trees, taken to a power > 1.

Examples

			The sequence of all series-reduced powerful uniform rooted trees together with their Matula-Goebel numbers begins:
    1: o
    4: (oo)
    8: (ooo)
   16: (oooo)
   32: (ooooo)
   49: ((oo)(oo))
   64: (oooooo)
  128: (ooooooo)
  196: (oo(oo)(oo))
  256: (oooooooo)
  343: ((oo)(oo)(oo))
  361: ((ooo)(ooo))
  512: (ooooooooo)
		

Crossrefs

Programs

  • Mathematica
    srpowunQ[n_]:=Or[n==1,And[SameQ@@FactorInteger[n][[All,2]],Min@@FactorInteger[n][[All,2]]>1,And@@srpowunQ/@PrimePi/@FactorInteger[n][[All,1]]]];
    Select[Range[100000],srpowunQ]
Showing 1-3 of 3 results.