A318611 Number of series-reduced powerful rooted trees with n nodes.
1, 0, 1, 1, 1, 1, 2, 1, 3, 3, 4, 4, 8, 5, 11, 10, 14, 14, 24, 18, 34, 32, 46, 45, 72, 60, 103, 96, 138, 137, 212, 184, 296, 282, 403, 397, 591, 539, 830, 798, 1125, 1119, 1624, 1519, 2253, 2195, 3067, 3056, 4341, 4158, 6004, 5897, 8145, 8164, 11397, 11090
Offset: 1
Keywords
Examples
The a(13) = 8 series-reduced powerful rooted trees: ((oo)(oo)(oo)(oo)) ((ooo)(ooo)(ooo)) (ooo(oo)(oo)(oo)) ((ooooo)(ooooo)) (oo(oooo)(oooo)) (oooo(ooo)(ooo)) (oooooo(oo)(oo)) (oooooooooooo)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..8000
Crossrefs
Programs
-
Maple
h:= proc(n, k, t) option remember; `if`(k=0, binomial(n+t, t), `if`(n=0, 0, add(h(n-1, k-j, t+1), j=2..k))) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*h(a(i), j, 0), j=0..n/i))) end: a:= n-> `if`(n<2, n, b(n-1$2)): seq(a(n), n=1..60); # Alois P. Heinz, Aug 31 2018
-
Mathematica
purt[n_]:=purt[n]=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]],Min@@Length/@Split[#]>1&],{ptn,IntegerPartitions[n-1]}]]; Table[Length[purt[n]],{n,20}] (* Second program: *) h[n_, k_, t_] := h[n, k, t] = If[k == 0, Binomial[n + t, t], If[n == 0, 0, Sum[h[n - 1, k - j, t + 1], {j, 2, k}]]]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*h[a[i], j, 0], {j, 0, n/i}]]]; a[n_] := If[n < 2, n, b[n - 1, n - 1]]; Array[a, 60] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)
Extensions
a(41)-a(56) from Alois P. Heinz, Aug 31 2018
Comments