cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318744 a(n) = Sum_{k=1..n} floor(n/k)^5.

Original entry on oeis.org

1, 33, 245, 1058, 3160, 8054, 17086, 33860, 60353, 103437, 164489, 257945, 380407, 556001, 779865, 1085840, 1457122, 1958008, 2544540, 3312306, 4205650, 5336264, 6618976, 8254674, 10059777, 12298021, 14792045, 17829881, 21130663, 25189011, 29518163, 34749419
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Floor[n/k]^5, {k, 1, n}], {n, 1, 40}]
    Accumulate[Table[DivisorSigma[0, k] - 5*DivisorSigma[1, k] + 10*DivisorSigma[2, k] - 10*DivisorSigma[3, k] + 5*DivisorSigma[4, k], {k, 1, 40}]]
  • PARI
    a(n) = sum(k=1, n, (n\k)^5); \\ Michel Marcus, Sep 03 2018
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (k^5-(k-1)^5)*x^k/(1-x^k))/(1-x)) \\ Seiichi Manyama, May 27 2021
    
  • Python
    from math import isqrt
    def A318744(n): return -(s:=isqrt(n))**6+sum((q:=n//k)*(k**5-(k-1)**5+q**4) for k in range(1,s+1)) # Chai Wah Wu, Oct 26 2023

Formula

a(n) = A006218(n) - 5*A024916(n) + 10*A064602(n) - 10*A064603(n) + 5*A064604(n).
a(n) ~ zeta(5) * n^5.