A318753
Number A(n,k) of rooted trees with n nodes such that no more than k subtrees extending from the same node have the same number of nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 3, 3, 0, 0, 1, 1, 2, 4, 7, 6, 0, 0, 1, 1, 2, 4, 8, 15, 12, 0, 0, 1, 1, 2, 4, 9, 18, 34, 25, 0, 0, 1, 1, 2, 4, 9, 19, 43, 79, 51, 0, 0, 1, 1, 2, 4, 9, 20, 46, 102, 190, 111, 0, 0, 1, 1, 2, 4, 9, 20, 47, 110, 250, 457, 240, 0
Offset: 0
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 2, 3, 4, 4, 4, 4, 4, 4, ...
0, 3, 7, 8, 9, 9, 9, 9, 9, ...
0, 6, 15, 18, 19, 20, 20, 20, 20, ...
0, 12, 34, 43, 46, 47, 48, 48, 48, ...
0, 25, 79, 102, 110, 113, 114, 115, 115, ...
Columns k=0-10 give:
A063524,
A032305,
A213920,
A318797,
A318798,
A318799,
A318800,
A318801,
A318802,
A318803,
A318804.
-
g:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
binomial(A(i, k)+j-1, j)*g(n-i*j, i-1, k), j=0..min(k, n/i))))
end:
A:= (n, k)-> g(n-1$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
g[n_, i_, k_] := g[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j]*g[n - i*j, i - 1, k], {j, 0, Min[k, n/i]}]]];
A[n_, k_] := g[n - 1, n - 1, k];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 27 2019, after Alois P. Heinz *)
A318758
Number T(n,k) of rooted trees with n nodes such that k equals the maximal number of isomorphic subtrees extending from the same node; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 3, 4, 1, 1, 0, 6, 9, 3, 1, 1, 0, 12, 22, 9, 3, 1, 1, 0, 25, 54, 23, 8, 3, 1, 1, 0, 52, 138, 60, 23, 8, 3, 1, 1, 0, 113, 346, 164, 61, 22, 8, 3, 1, 1, 0, 247, 889, 443, 167, 61, 22, 8, 3, 1, 1, 0, 548, 2285, 1209, 461, 168, 60, 22, 8, 3, 1, 1
Offset: 1
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 1, 1;
0, 3, 4, 1, 1;
0, 6, 9, 3, 1, 1;
0, 12, 22, 9, 3, 1, 1;
0, 25, 54, 23, 8, 3, 1, 1;
0, 52, 138, 60, 23, 8, 3, 1, 1;
0, 113, 346, 164, 61, 22, 8, 3, 1, 1;
Columns k=0-10 give:
A063524,
A004111 (for n>1),
A318859,
A318860,
A318861,
A318862,
A318863,
A318864,
A318865,
A318866,
A318867.
-
h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
`if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
end:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
T:= (n, k)-> A(n, k)-`if`(k=0, 0, A(n, k-1)):
seq(seq(T(n, k), k=0..n-1), n=1..14);
-
h[n_, m_, t_, k_] := h[n, m, t, k] = If[m == 0, Binomial[n + t, t], If[n == 0, 0, Sum[h[n - 1, m - j, t + 1, k], {j, 1, Min[k, m]}]]];
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k]*h[A[i, k], j, 0, k], {j, 0, n/i}]]];
A[n_, k_] := If[n < 2, n, b[n - 1, n - 1, k]];
T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
Table[T[n, k], {n, 1, 14}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, May 11 2019, after Alois P. Heinz *)
A255705
Number of 2n+1-node rooted trees in which the maximal number of nodes in paths starting at a leaf and ending at the first branching node or at the root equals n+1.
Original entry on oeis.org
1, 1, 3, 8, 22, 60, 167, 465, 1306, 3681, 10422, 29597, 84313, 240757, 689035, 1975753, 5675145, 16326198, 47032200, 135658367, 391733593, 1132357784, 3276330780, 9487885056, 27497891241, 79753806451, 231474005120, 672250119756, 1953523496677, 5680002466125
Offset: 0
-
with(numtheory):
g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)-
`if`(d=k, 1, 0)), d=divisors(j))*g(n-j, k), j=1..n)/n)
end:
a:= a-> g(2*n, n+1) -`if`(n=0, 0, g(2*n, n)):
seq(a(n), n=0..40);
-
g[n_, k_] := g[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*(g[# - 1, k] - If[# == k, 1, 0]) &]*g[n - j, k], {j, 1, n}]/n];
a[n_] := g[2n, n+1] - If[n == 0, 0, g[2n, n]];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 24 2017, translated from Maple *)
A318817
Number of rooted trees with n nodes such that two equals the maximal number of subtrees of the same size extending from the same node.
Original entry on oeis.org
0, 1, 1, 4, 9, 22, 54, 139, 346, 892, 2290, 5945, 15465, 40527, 106308, 280629, 742107, 1969394, 5239322, 13980900, 37368692, 100157418, 268900827, 723400570, 1949440608, 5262932344, 14227803491, 38529294292, 104473993774, 283672750693, 771229441388
Offset: 2
-
g:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
binomial(g(i-1$2, k)+j-1, j)*g(n-i*j, i-1, k), j=0..min(k, n/i))))
end:
a:= n-> (k-> g(n-1$2, k) -g(n-1$2, k-1))(2):
seq(a(n), n=2..32);
A318818
Number of rooted trees with n nodes such that three equals the maximal number of subtrees of the same size extending from the same node.
Original entry on oeis.org
0, 1, 1, 3, 9, 23, 60, 166, 447, 1219, 3344, 9214, 25493, 70853, 197150, 550259, 1539767, 4314746, 12112304, 34063256, 95904943, 270375031, 763193304, 2156328194, 6098563949, 17264760959, 48912296290, 138683094562, 393514686620, 1117304554815, 3174397805762
Offset: 3
-
g:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
binomial(g(i-1$2, k)+j-1, j)*g(n-i*j, i-1, k), j=0..min(k, n/i))))
end:
a:= n-> (k-> g(n-1$2, k) -g(n-1$2, k-1))(3):
seq(a(n), n=3..33);
A318819
Number of rooted trees with n nodes such that four equals the maximal number of subtrees of the same size extending from the same node.
Original entry on oeis.org
0, 1, 1, 3, 8, 23, 61, 167, 461, 1288, 3593, 10084, 28381, 80218, 227156, 644864, 1834290, 5227297, 14919502, 42644478, 122047963, 349716506, 1003120145, 2880163515, 8276937322, 23805829084, 68521035251, 197365718477, 568859465838, 1640609651599, 4734261078026
Offset: 4
-
g:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
binomial(g(i-1$2, k)+j-1, j)*g(n-i*j, i-1, k), j=0..min(k, n/i))))
end:
a:= n-> (k-> g(n-1$2, k) -g(n-1$2, k-1))(4):
seq(a(n), n=4..34);
A318820
Number of rooted trees with n nodes such that five equals the maximal number of subtrees of the same size extending from the same node.
Original entry on oeis.org
0, 1, 1, 3, 8, 22, 61, 168, 465, 1302, 3659, 10333, 29255, 83096, 236609, 675311, 1931235, 5532421, 15873557, 45608348, 131208906, 377906025, 1089573851, 3144456980, 9082730826, 26256633715, 75960348880, 219905556560, 637038643771, 1846531053341, 5355395451034
Offset: 5
-
g:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
binomial(g(i-1$2, k)+j-1, j)*g(n-i*j, i-1, k), j=0..min(k, n/i))))
end:
a:= n-> (k-> g(n-1$2, k) -g(n-1$2, k-1))(5):
seq(a(n), n=5..35);
A318821
Number of rooted trees with n nodes such that six equals the maximal number of subtrees of the same size extending from the same node.
Original entry on oeis.org
0, 1, 1, 3, 8, 22, 60, 168, 466, 1306, 3677, 10400, 29503, 83969, 239533, 684880, 1961986, 5630451, 16182950, 46577929, 134228796, 387264335, 1118459507, 3233302665, 9355173164, 27089886520, 78502923212, 227648300409, 660574571072, 1917958785876, 5571852459248
Offset: 6
-
g:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
binomial(g(i-1$2, k)+j-1, j)*g(n-i*j, i-1, k), j=0..min(k, n/i))))
end:
a:= n-> (k-> g(n-1$2, k) -g(n-1$2, k-1))(6):
seq(a(n), n=6..36);
A318822
Number of rooted trees with n nodes such that seven equals the maximal number of subtrees of the same size extending from the same node.
Original entry on oeis.org
0, 1, 1, 3, 8, 22, 60, 167, 466, 1307, 3681, 10418, 29575, 84219, 240407, 687808, 1971588, 5661365, 16281441, 46888772, 135203432, 390301957, 1127881755, 3262409450, 9444778623, 27364912377, 79344893246, 230220066260, 668414195077, 1941813994013, 5644325624891
Offset: 7
-
g:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
binomial(g(i-1$2, k)+j-1, j)*g(n-i*j, i-1, k), j=0..min(k, n/i))))
end:
a:= n-> (k-> g(n-1$2, k) -g(n-1$2, k-1))(7):
seq(a(n), n=7..37);
A318823
Number of rooted trees with n nodes such that eight equals the maximal number of subtrees of the same size extending from the same node.
Original entry on oeis.org
0, 1, 1, 3, 8, 22, 60, 167, 465, 1307, 3682, 10422, 29593, 84291, 240663, 688685, 1974519, 5670976, 16312405, 46987424, 135514856, 391278424, 1130925409, 3271852293, 9473955776, 27454758665, 79620740071, 231064799358, 670995202298, 1949684311164, 5668282144436
Offset: 8
-
g:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
binomial(g(i-1$2, k)+j-1, j)*g(n-i*j, i-1, k), j=0..min(k, n/i))))
end:
a:= n-> (k-> g(n-1$2, k) -g(n-1$2, k-1))(8):
seq(a(n), n=8..38);
Showing 1-10 of 12 results.
Comments