cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A347060 Total number of 1's in the binary expansion of parts in all partitions of n into distinct parts.

Original entry on oeis.org

0, 1, 1, 4, 4, 7, 11, 15, 20, 28, 39, 48, 64, 80, 104, 134, 167, 203, 257, 311, 381, 470, 566, 680, 820, 981, 1168, 1394, 1650, 1946, 2300, 2700, 3161, 3705, 4315, 5026, 5845, 6769, 7827, 9049, 10424, 11992, 13784, 15801, 18088, 20702, 23620, 26922, 30665
Offset: 0

Views

Author

Alois P. Heinz, Aug 14 2021

Keywords

Examples

			a(5) = 7 counts the 1's in [101], [100, 1], [11, 10].
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; add(i, i=Bits[Split](n)) end:
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(n>i*(i+1)/2, 0, b(n, i-1)+(p-> p+
           [0, p[1]*h(i)])(b(n-i, min(n-i, i-1)))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..60);

A319140 Total number of binary digits in all partitions of n into distinct parts.

Original entry on oeis.org

1, 2, 5, 6, 11, 17, 23, 30, 44, 60, 76, 102, 128, 166, 214, 264, 327, 413, 502, 618, 759, 917, 1105, 1335, 1598, 1907, 2279, 2702, 3191, 3776, 4436, 5198, 6101, 7113, 8292, 9653, 11188, 12951, 14984, 17277, 19889, 22881, 26248, 30073, 34439, 39320, 44850
Offset: 1

Views

Author

David S. Newman, Sep 11 2018

Keywords

Examples

			For n = 4 there are 2 partitions into distinct parts in binary they are: 100, 11+1, for a total of 6 binary parts.
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; 1+ilog2(n) end:
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(n>i*(i+1)/2, 0, b(n, i-1)+(p-> p+h(i)
           *[0, p[1]])(b(n-i, min(n-i, i-1)))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=1..60);  # Alois P. Heinz, Sep 27 2018
  • Mathematica
    h[n_] := h[n] = 1+Log[2, n] // Floor;
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[n > i*(i+1)/2, 0, b[n, i-1] + Function[p, p + h[i]*{0, p[[1]]}][b[n-i, Min[n-i, i-1]]]]];
    a[n_] := b[n, n][[2]];
    a /@ Range[1; 60] (* Jean-François Alcover, Sep 28 2019, after Alois P. Heinz *)
  • PARI
    seq(n)={[subst(deriv(p,y), y, 1) | p<-Vec(-1 + prod(k=1, n, 1 + x^k*y^(logint(k,2)+1) + O(x*x^n)))]} \\ Andrew Howroyd, Sep 17 2018
Showing 1-2 of 2 results.