A318762 Number of permutations of a multiset whose multiplicities are the prime indices of n.
1, 1, 1, 2, 1, 3, 1, 6, 6, 4, 1, 12, 1, 5, 10, 24, 1, 30, 1, 20, 15, 6, 1, 60, 20, 7, 90, 30, 1, 60, 1, 120, 21, 8, 35, 180, 1, 9, 28, 120, 1, 105, 1, 42, 210, 10, 1, 360, 70, 140, 36, 56, 1, 630, 56, 210, 45, 11, 1, 420, 1, 12, 420, 720, 84, 168, 1, 72, 55
Offset: 1
Examples
The a(12) = 12 permutations are (1123), (1132), (1213), (1231), (1312), (1321), (2113), (2131), (2311), (3112), (3121), (3211).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Maple
a:= n-> (l-> add(i, i=l)!/mul(i!, i=l))(map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2])): seq(a(n), n=1..100); # Alois P. Heinz, Sep 03 2018
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Total[primeMS[n]]!/Times@@Factorial/@primeMS[n],{n,100}]
-
PARI
sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i, 2], j, primepi(f[i, 1]))))} a(n)={if(n==1, 1, my(s=sig(n)); vecsum(s)!/prod(i=1, #s, s[i]!))} \\ Andrew Howroyd, Dec 17 2018
Formula
If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) = (Sum x_i * y_i)! / Product (x_i!)^y_i.
Comments