cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318762 Number of permutations of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 6, 6, 4, 1, 12, 1, 5, 10, 24, 1, 30, 1, 20, 15, 6, 1, 60, 20, 7, 90, 30, 1, 60, 1, 120, 21, 8, 35, 180, 1, 9, 28, 120, 1, 105, 1, 42, 210, 10, 1, 360, 70, 140, 36, 56, 1, 630, 56, 210, 45, 11, 1, 420, 1, 12, 420, 720, 84, 168, 1, 72, 55
Offset: 1

Views

Author

Gus Wiseman, Sep 03 2018

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The a(12) = 12 permutations are (1123), (1132), (1213), (1231), (1312), (1321), (2113), (2131), (2311), (3112), (3121), (3211).
		

Crossrefs

Programs

  • Maple
    a:= n-> (l-> add(i, i=l)!/mul(i!, i=l))(map(i->
           numtheory[pi](i[1])$i[2], ifactors(n)[2])):
    seq(a(n), n=1..100);  # Alois P. Heinz, Sep 03 2018
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[primeMS[n]]!/Times@@Factorial/@primeMS[n],{n,100}]
  • PARI
    sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i, 2], j, primepi(f[i, 1]))))}
    a(n)={if(n==1, 1, my(s=sig(n)); vecsum(s)!/prod(i=1, #s, s[i]!))}  \\ Andrew Howroyd, Dec 17 2018

Formula

If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) = (Sum x_i * y_i)! / Product (x_i!)^y_i.
a(n) = A008480(A181821(n)).
a(n) = A112624(n) * A124794(n). - Max Alekseyev, Oct 15 2023
Sum_{m in row n of A215366} a(m) = A005651(n).
Sum_{m in row n of A215366} a(m) * A008480(m) = A000670(n).
Sum_{m in row n of A215366} a(m) * A008480(m) / A001222(m)! = A000110(n).