cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318791 Prime generating polynomial: a(n) = 9*n^2 - 249*n + 1763.

Original entry on oeis.org

1523, 1301, 1097, 911, 743, 593, 461, 347, 251, 173, 113, 71, 47, 41, 53, 83, 131, 197, 281, 383, 503, 641, 797, 971, 1163, 1373, 1601, 1847, 2111, 2393, 2693, 3011, 3347, 3701, 4073, 4463, 4871, 5297, 5741, 6203, 6683, 7181, 7697, 8231, 8783, 9353
Offset: 1

Views

Author

Arashdeep Singh, Dec 15 2018

Keywords

Comments

This polynomial (9*n^2 - 249*n + 1763) generates 40 distinct primes in succession from n = 1 to 40.

Crossrefs

Programs

  • Maple
    seq(9*n^2-249*n+1763,n=1..50); # Muniru A Asiru, Dec 19 2018
  • Mathematica
    Array[9#^2 - 249# + 1763 &, 50] (* Amiram Eldar, Dec 15 2018 *)

Formula

From Chai Wah Wu, Feb 12 2019: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3.
G.f.: x*(-1763*x^2 + 3268*x - 1523)/(x - 1)^3. (End)
a(n) = p(41 - 3*n), where p(n) = n^2 + n + 41 is Euler's prime generating polynomial - see A202018 and A005846. - Peter Bala, Jun 10 2021
E.g.f.: exp(x)*(9*x^2 - 240*x + 1763) - 1763. - Elmo R. Oliveira, Feb 10 2025