cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A318837 Restricted growth sequence transform of A318836.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 3, 3, 4, 2, 5, 2, 6, 7, 8, 2, 9, 2, 7, 10, 11, 2, 12, 4, 13, 9, 10, 2, 14, 2, 15, 16, 17, 18, 19, 2, 20, 21, 22, 2, 23, 2, 16, 24, 25, 2, 26, 6, 27, 28, 21, 2, 29, 30, 31, 32, 33, 2, 34, 2, 35, 36, 37, 38, 39, 2, 28, 40, 41, 2, 42, 2, 43, 44, 32, 45, 46, 2, 47, 29, 48, 2, 49, 50, 51, 52, 53, 2, 54, 55, 40, 56, 57, 58, 59, 2, 60, 61, 44, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 05 2018

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007431(n) = sumdiv(n,d,moebius(n/d)*eulerphi(d));
    A318836(n) = { my(m=1); fordiv(n,d,if((dA007431(d)!=0),m *= prime(A007431(d)))); (m); }; \\
    v318837 = rgs_transform(vector(up_to,n,A318836(n)));
    A318837(n) = v318837[n];

Formula

For all i, j: a(i) = a(j) => A062790(i) = A062790(j).

A062790 Moebius transform of the cototient function A051953.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 2, 4, 1, 3, 1, 6, 5, 4, 1, 6, 1, 5, 7, 10, 1, 6, 4, 12, 6, 7, 1, 8, 1, 8, 11, 16, 9, 8, 1, 18, 13, 10, 1, 12, 1, 11, 12, 22, 1, 12, 6, 20, 17, 13, 1, 18, 13, 14, 19, 28, 1, 13, 1, 30, 16, 16, 15, 20, 1, 17, 23, 24, 1, 16, 1, 36, 24, 19, 15, 24, 1, 20, 18, 40, 1, 19
Offset: 1

Views

Author

Labos Elemer, Jul 19 2001

Keywords

Examples

			n = 255, its divisors are {1,3,5,25,17,51,85,255}, A051953(255/d) = {127,21,19,1,7,1,1,0}, mu(d) = {1,-1,-1,1,-1,1,1,-1}, the sum is a(255) = 127-21-19+1-7+1+1+0 = 130-47 = 83.
		

Crossrefs

Programs

  • Mathematica
    Table[DirichletConvolve[MoebiusMu[n], n-EulerPhi[n], n, k], {k, 100}]  (* Amiram Eldar, Nov 24 2018 *)
  • PARI
    A062790(n)={
        local(a=0) ;
        fordiv(n,d,
            a += moebius(d)*(n/d-eulerphi(n/d)) ;
        ) ;
        return(a) ;
    } \\ R. J. Mathar, Mar 24 2012
    
  • PARI
    A062790(n) = sumdiv(n,d,moebius(n/d)*(d-eulerphi(d))); \\ Antti Karttunen, Nov 24 2018

Formula

a(n) = Sum f(n/d)*mu(d), where d divides n and f(x) = x-phi(x) = A051953(x).
a(n) = A056239(A318836(n)). - Antti Karttunen, Nov 24 2018
From Amiram Eldar, Dec 15 2023: (Start)
a(n) = A000010(n) - A007431(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 6/Pi^2 - 36/Pi^4. (End)

Extensions

OFFSET changed from 0 to 1 by Harry J. Smith, Aug 11 2009

A318838 Product_{d|n, A007431(d) > 0} prime(A007431(d)), where A007431 is the Möbius transform of Euler's totient function.

Original entry on oeis.org

2, 2, 4, 4, 10, 4, 22, 12, 28, 10, 46, 16, 62, 22, 100, 84, 94, 28, 118, 100, 484, 46, 146, 144, 530, 62, 1036, 484, 206, 100, 218, 1596, 2116, 94, 5170, 784, 298, 118, 3844, 3900, 334, 484, 358, 2116, 25900, 146, 394, 7056, 3322, 530, 8836, 3844, 466, 1036, 23690, 42108, 13924, 206, 538, 10000, 554, 218, 240548
Offset: 1

Views

Author

Antti Karttunen, Sep 05 2018

Keywords

Crossrefs

Cf. A000010, A007431, A318839 (rgs-transform).
Cf. also A318836.

Programs

  • PARI
    A007431(n) = sumdiv(n,d,moebius(n/d)*eulerphi(d));
    A318838(n) = { my(m=1); fordiv(n,d,if((A007431(d)!=0),m *= prime(A007431(d)))); (m); };

Formula

a(n) = product_{d|n} A008578(1+A007431(d)).
For all n >= 1, A056239(a(n)) = A000010(n).
Showing 1-3 of 3 results.