A319012 a(n) = Sum_{i=1..n} prime(n*(i - 1) + i).
2, 9, 36, 99, 224, 407, 724, 1129, 1700, 2451, 3382, 4543, 5986, 7661, 9724, 12041, 14762, 17891, 21482, 25499, 29998, 35083, 40644, 46873, 53620, 61077, 69240, 78119, 87686, 98053, 109290, 121503, 134388, 148297, 162970, 178905, 195770, 213725, 232794
Offset: 1
Keywords
Examples
For n = 1 the matrix M(1) is 2 with trace Tr(M(1)) = a(1) = 2. For n = 2 the matrix M(2) is 2, 3 5, 7 with Tr(M(2)) = a(2) = 9. For n = 3 the matrix M(3) is 2, 3, 5 7, 11, 13 17, 19, 23 with Tr(M(3)) = a(3) = 36.
Links
- Stefano Spezia, Table of n, a(n) for n = 1..3000
Programs
-
Maple
a:=n->add(ithprime(n*(i-1)+i),i=1..n): seq(a(n),n=1..40); # Muniru A Asiru, Sep 17 2018
-
Mathematica
Table[Tr[Partition[Array[Prime, n^2], n]], {n, 40}]
-
PARI
a(n) = sum(i=1, n, prime(n*(i - 1) + i)); \\ Michel Marcus, Sep 07 2018
Formula
a(n) = Sum_{i=1..n} A000040(n*(i - 1) + i).
a(n) ~ n^3*log(n). - Stefano Spezia, Jul 01 2021
Comments