cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319014 a(n) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17*18 + ... + (up to n).

Original entry on oeis.org

1, 2, 6, 10, 26, 126, 133, 182, 630, 640, 740, 1950, 1963, 2132, 4680, 4696, 4952, 9576, 9595, 9956, 17556, 17578, 18062, 29700, 29725, 30350, 47250, 47278, 48062, 71610, 71641, 72602, 104346, 104380, 105536, 147186, 147223, 148592, 202020, 202060, 203660
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 07 2018

Keywords

Comments

In general, for sequences that multiply the first k natural numbers, and then add the product of the next k natural numbers (preserving the order of operations up to n), we have a(n) = Sum_{i=1..floor(n/k)} (k*i)!/(k*i-k)! + Sum_{j=1..k-1} (1-sign((n-j) mod k)) * (Product_{i=1..j} n-i+1). Here, k=3.

Examples

			a(1)  = 1;
a(2)  = 1*2 = 2;
a(3)  = 1*2*3 = 6;
a(4)  = 1*2*3 + 4 = 10;
a(5)  = 1*2*3 + 4*5 = 26;
a(6)  = 1*2*3 + 4*5*6 = 126;
a(7)  = 1*2*3 + 4*5*6 + 7 = 133;
a(8)  = 1*2*3 + 4*5*6 + 7*8 = 182;
a(9)  = 1*2*3 + 4*5*6 + 7*8*9 = 630;
a(10) = 1*2*3 + 4*5*6 + 7*8*9 + 10 = 640;
a(11) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11 = 740;
a(12) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 = 1950;
a(13) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13 = 1963;
a(14) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14 = 2132;
a(15) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 = 4680;
a(16) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16 = 4696;
a(17) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17 = 4952;
a(18) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17*18 = 9576;
a(19) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17*18 + 19 = 9595;
etc.
		

Crossrefs

Cf. A093361, (k=1) A000217, (k=2) A228958, (k=3) this sequence, (k=4) A319205, (k=5) A319206, (k=6) A319207, (k=7) A319208, (k=8) A319209, (k=9) A319211, (k=10) A319212.
Cf. A049347, A061347, A268685 (trisection).

Programs

  • Mathematica
    CoefficientList[Series[(1 + x + 4*x^2 + 12*x^4 + 84*x^5 - 3*x^6 - 9*x^7 + 72*x^8 + 2*x^9 - 4*x^10 + 2*x^11)/((1 - x)^5*(1 + x + x^2)^4), {x, 0, 50}], x] (* after Colin Barker *)
  • PARI
    Vec(x*(1 + x + 4*x^2 + 12*x^4 + 84*x^5 - 3*x^6 - 9*x^7 + 72*x^8 + 2*x^9 - 4*x^10 + 2*x^11) / ((1 - x)^5*(1 + x + x^2)^4) + O(x^50)) \\ Colin Barker, Sep 08 2018

Formula

a(n) = Sum_{i=1..floor(n/3)} (3*i)!/(3*i-3)! + Sum_{j=1..2} (1-sign((n-j) mod 3)) * (Product_{i=1..j} n-i+1).
From Colin Barker, Sep 08 2018: (Start)
G.f.: x*(1 + x + 4*x^2 + 12*x^4 + 84*x^5 - 3*x^6 - 9*x^7 + 72*x^8 + 2*x^9 - 4*x^10 + 2*x^11) / ((1 - x)^5*(1 + x + x^2)^4).
a(n) = a(n-1) + 4*a(n-3) - 4*a(n-4) - 6*a(n-6) + 6*a(n-7) + 4*a(n-9) - 4*a(n-10) - a(n-12) + a(n-13) for n>13.
(End)
a(3*k) = 3*k*(k+1)*(3*k-2)*(3*k+1)/4, a(3*k+1) = a(3*k) + 3*k + 1, a(3*k+2) = a(3*k) + (3*k+2)*(3*k+1). - Giovanni Resta, Sep 08 2018
a(n) = (3*n^4 - 6*n^3 + 9*n^2 + 6*n - 8 - 2*(3*n^3 - 6*n^2 - 6*n + 2)*A061347(n-3) + 6*(n^3 - 6*n^2 + 6*n + 2)*A049347(n-2))/36. - Stefano Spezia, Apr 23 2023