cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A228958 a(n) = 1*2 + 3*4 + 5*6 + 7*8 + 9*10 + 11*12 + 13*14 + ... + (up to n).

Original entry on oeis.org

1, 2, 5, 14, 19, 44, 51, 100, 109, 190, 201, 322, 335, 504, 519, 744, 761, 1050, 1069, 1430, 1451, 1892, 1915, 2444, 2469, 3094, 3121, 3850, 3879, 4720, 4751, 5712, 5745, 6834, 6869, 8094, 8131, 9500, 9539, 11060, 11101, 12782, 12825, 14674, 14719, 16744
Offset: 1

Views

Author

Robert Pfister, Sep 09 2013

Keywords

Comments

In general, for sequences that multiply the first k natural numbers, and then add the product of the next k natural numbers (preserving the order of operations up to n), we have a(n) = Sum_{i=1..floor(n/k)} (k*i)!/(k*i-k)! + Sum_{j=1..k-1} (1-sign((n-j) mod k)) * (Product_{i=1..j} n-i+1). Here, k=2. - Wesley Ivan Hurt, Sep 10 2018
a(2n) is the total area of the family of n rectangles, where the k-th rectangle has dimensions (2k) X (2k-1). - Wesley Ivan Hurt, Oct 01 2018

Examples

			1                            =   1
1*2                          =   2
1*2 + 3                      =   5
1*2 + 3*4                    =  14
1*2 + 3*4 + 5                =  19
1*2 + 3*4 + 5*6              =  44
1*2 + 3*4 + 5*6 + 7          =  51
1*2 + 3*4 + 5*6 + 7*8        = 100
1*2 + 3*4 + 5*6 + 7*8 + 9    = 109
1*2 + 3*4 + 5*6 + 7*8 + 9*10 = 190
...
		

Crossrefs

Cf. A093361, (k=1) A000217, (k=2) this sequence, (k=3) A319014, (k=4) A319205, (k=5) A319206, (k=6) A319207, (k=7) A319208, (k=8) A319209, (k=9) A319211, (k=10) A319212.

Programs

  • Magma
    [(1/12)*(2*n^3+4*n+3/2+(3*n^2-6*n-3/2)*(-1)^n): n in [1..50]]; // Vincenzo Librandi, Sep 11 2018
  • Mathematica
    a[n_?OddQ] := (2*n^3-3*n^2+10*n+3)/12; a[n_?EvenQ] := n*(n+2)*(2*n-1)/12; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Sep 10 2013 *)
    CoefficientList[Series[x(x^5 - x^4 + 6*x^3 + x + 1)/((x-1)^4*(x+1)^3), {x, 0, 40}], x] (* Stefano Spezia, Sep 23 2018 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,2,5,14,19,44,51},50] (* Harvey P. Dale, Mar 11 2023 *)
  • PARI
    Vec( x*(x^5 - x^4 + 6*x^3 + x + 1)/((x-1)^4*(x+1)^3) + O(x^66) ) \\ Joerg Arndt, Sep 17 2013
    

Formula

a(n) = (1/12)*(2*n^3+4*n+3/2+(3*n^2-6*n-3/2)*(-1)^n). [based on Alcover program]
G.f.: x*(x^5 - x^4 + 6*x^3 + x + 1)/((x-1)^4*(x+1)^3). [Joerg Arndt, Sep 13 2013]
E.g.f.: (x*(9 + 9*x + 2*x^2)*cosh(x) + (3 + 3*x + 3*x^2 + 2*x^3)*sinh(x))/12. - Stefano Spezia, Apr 18 2023

Extensions

Definition corrected by Ivan Panchenko, Dec 02 2013

A319205 a(n) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16 + 17*18*19*20 + ... + (up to n).

Original entry on oeis.org

1, 2, 6, 24, 29, 54, 234, 1704, 1713, 1794, 2694, 13584, 13597, 13766, 16314, 57264, 57281, 57570, 63078, 173544, 173565, 174006, 184170, 428568, 428593, 429218, 446118, 919968, 919997, 920838, 946938, 1783008, 1783041, 1784130, 1822278, 3196728, 3196765
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 13 2018

Keywords

Comments

In general, for sequences that multiply the first k natural numbers, and then add the product of the next k natural numbers (preserving the order of operations up to n), we have a(n) = Sum_{i=1..floor(n/k)} (k*i)!/(k*i-k)! + Sum_{j=1..k-1} (1-sign((n-j) mod k)) * (Product_{i=1..j} n-i+1). Here, k=4.

Examples

			a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2*3 = 6;
a(4) = 1*2*3*4 = 24;
a(5) = 1*2*3*4 + 5 = 29;
a(6) = 1*2*3*4 + 5*6 = 54;
a(7) = 1*2*3*4 + 5*6*7 = 234;
a(8) = 1*2*3*4 + 5*6*7*8 = 1704;
a(9) = 1*2*3*4 + 5*6*7*8 + 9 = 1713;
a(10) = 1*2*3*4 + 5*6*7*8 + 9*10 = 1794;
a(11) = 1*2*3*4 + 5*6*7*8 + 9*10*11 = 2694;
a(12) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 = 13584;
a(13) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13 = 13597;
a(14) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14 = 13766;
a(15) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15 = 16314;
a(16) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16 = 57264;
a(17) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16 + 17 = 57281;
a(18) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16 + 17*18 = 57570;
a(19) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16 + 17*18*19 = 63078;
etc.
		

Crossrefs

Cf. A093361, (k=1) A000217, (k=2) A228958, (k=3) A319014, (k=4) this sequence, (k=5) A319206, (k=6) A319207, (k=7) A319208, (k=8) A319209, (k=9) A319211, (k=10) A319212.

Programs

  • Mathematica
    a[n_]:=Sum[(4*i)!/(4*i-4)!, {i, 1, Floor[n/4] }] + Sum[(1-Sign[Mod[n-j,4]])*Product[n-i+1, {i, 1, j}], {j, 1, 3}] ; Array[a, 40] (* Stefano Spezia, Sep 17 2018 *)
  • PARI
    Vec(x*(1 + x + 4*x^2 + 18*x^3 + 20*x^5 + 160*x^6 + 1380*x^7 - 6*x^8 - 34*x^9 + 40*x^10 + 3720*x^11 + 8*x^12 + 4*x^13 - 192*x^14 + 1020*x^15 - 3*x^16 + 9*x^17 - 12*x^18 + 6*x^19) / ((1 - x)^6*(1 + x)^5*(1 + x^2)^5) + O(x^40)) \\ Colin Barker, Sep 14 2018

Formula

a(n) = Sum_{i=1..floor(n/4)} (4*i)!/(4*i-4)! + Sum_{j=1..3} (1-sign((n-j) mod 4)) * (Product_{i=1..j} n-i+1).
From Colin Barker, Sep 14 2018: (Start)
G.f.: x*(1 + x + 4*x^2 + 18*x^3 + 20*x^5 + 160*x^6 + 1380*x^7 - 6*x^8 - 34*x^9 + 40*x^10 + 3720*x^11 + 8*x^12 + 4*x^13 - 192*x^14 + 1020*x^15 - 3*x^16 + 9*x^17 - 12*x^18 + 6*x^19) / ((1 - x)^6*(1 + x)^5*(1 + x^2)^5).
a(n) = a(n-1) + 5*a(n-4) - 5*a(n-5) - 10*a(n-8) + 10*a(n-9) + 10*a(n-12) - 10*a(n-13) - 5*a(n-16) + 5*a(n-17) + a(n-20) - a(n-21) for n>21.
(End)

A319206 a(n) = 1*2*3*4*5 + 6*7*8*9*10 + 11*12*13*14*15 + ... + (up to n).

Original entry on oeis.org

1, 2, 6, 24, 120, 126, 162, 456, 3144, 30360, 30371, 30492, 32076, 54384, 390720, 390736, 390992, 395616, 483744, 2251200, 2251221, 2251662, 2261826, 2506224, 8626800, 8626826, 8627502, 8646456, 9196824, 25727520, 25727551, 25728512, 25760256, 26840544
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 13 2018

Keywords

Comments

In general, for sequences that multiply the first k natural numbers, and then add the product of the next k natural numbers (preserving the order of operations up to n), we have a(n) = Sum_{i=1..floor(n/k)} (k*i)!/(k*i-k)! + Sum_{j=1..k-1} (1-sign((n-j) mod k)) * (Product_{i=1..j} n-i+1). Here, k=5.

Examples

			a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2*3 = 6;
a(4) = 1*2*3*4 = 24;
a(5) = 1*2*3*4*5 = 120;
a(6) = 1*2*3*4*5 + 6 = 126;
a(7) = 1*2*3*4*5 + 6*7 = 162;
a(8) = 1*2*3*4*5 + 6*7*8 = 456;
a(9) = 1*2*3*4*5 + 6*7*8*9 = 3144;
a(10) = 1*2*3*4*5 + 6*7*8*9*10 = 30360;
a(11) = 1*2*3*4*5 + 6*7*8*9*10 + 11 = 30371;
a(12) = 1*2*3*4*5 + 6*7*8*9*10 + 11*12 = 30492; etc.
		

Crossrefs

Cf. A093361, (k=1) A000217, (k=2) A228958, (k=3) A319014, (k=4) A319205, (k=5) this sequence, (k=6) A319207, (k=7) A319208, (k=8) A319209, (k=9) A319211, (k=10) A319212.

Programs

  • Mathematica
    a[n_]:=Sum[(5*i)!/(5*i-5)!, {i, 1, Floor[n/5] }] + Sum[(1-Sign[Mod[n-j, 5]])*Product[n-i+1, {i, 1, j}], {j, 1, 4}] ; Array[a, 34] (* Stefano Spezia, Apr 18 2023 *)
  • PARI
    Vec(x*(1 + x + 4*x^2 + 18*x^3 + 96*x^4 + 30*x^6 + 270*x^7 + 2580*x^8 + 26640*x^9 - 10*x^10 - 80*x^11 - 120*x^12 + 6450*x^13 + 174480*x^14 + 20*x^15 + 50*x^16 - 550*x^17 - 5760*x^18 + 155760*x^19 - 15*x^20 + 15*x^21 + 360*x^22 - 3240*x^23 + 18000*x^24 + 4*x^25 - 16*x^26 + 36*x^27 - 48*x^28 + 24*x^29) / ((1 - x)^7*(1 + x + x^2 + x^3 + x^4)^6) + O(x^40)) \\ Colin Barker, Sep 14 2018

Formula

a(n) = Sum_{i=1..floor(n/5)} (5*i)!/(5*i-5)! + Sum_{j=1..4} (1-sign((n-j) mod 5)) * (Product_{i=1..j} n-i+1).
From Colin Barker, Sep 14 2018: (Start)
G.f.: x*(1 + x + 4*x^2 + 18*x^3 + 96*x^4 + 30*x^6 + 270*x^7 + 2580*x^8 + 26640*x^9 - 10*x^10 - 80*x^11 - 120*x^12 + 6450*x^13 + 174480*x^14 + 20*x^15 + 50*x^16 - 550*x^17 - 5760*x^18 + 155760*x^19 - 15*x^20 + 15*x^21 + 360*x^22 - 3240*x^23 + 18000*x^24 + 4*x^25 - 16*x^26 + 36*x^27 - 48*x^28 + 24*x^29) / ((1 - x)^7*(1 + x + x^2 + x^3 + x^4)^6).
a(n) = a(n-1) + 6*a(n-5) - 6*a(n-6) - 15*a(n-10) + 15*a(n-11) + 20*a(n-15) - 20*a(n-16) - 15*a(n-20) + 15*a(n-21) + 6*a(n-25) - 6*a(n-26) - a(n-30) + a(n-31) for n>31.
(End)

A319207 a(n) = 1*2*3*4*5*6 + 7*8*9*10*11*12 + 13*14*15*16*17*18 + ... + (up to n).

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 727, 776, 1224, 5760, 56160, 666000, 666013, 666182, 668730, 709680, 1408560, 14032080, 14032099, 14032460, 14040060, 14207640, 18069960, 110941200, 110941225, 110941850, 110958750, 111432600, 125191800, 538459200, 538459231, 538460192
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 13 2018

Keywords

Comments

In general, for sequences that multiply the first k natural numbers, and then add the product of the next k natural numbers (preserving the order of operations up to n), we have a(n) = Sum_{i=1..floor(n/k)} (k*i)!/(k*i-k)! + Sum_{j=1..k-1} (1-sign((n-j) mod k)) * (Product_{i=1..j} n-i+1). Here, k=6.

Examples

			a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2*3 = 6;
a(4) = 1*2*3*4 = 24;
a(5) = 1*2*3*4*5 = 120;
a(6) = 1*2*3*4*5*6 = 720;
a(7) = 1*2*3*4*5*6 + 7 = 727;
a(8) = 1*2*3*4*5*6 + 7*8 = 776;
a(9) = 1*2*3*4*5*6 + 7*8*9 = 1224;
a(10) = 1*2*3*4*5*6 + 7*8*9*10 = 5760;
a(11) = 1*2*3*4*5*6 + 7*8*9*10*11 = 56160;
a(12) = 1*2*3*4*5*6 + 7*8*9*10*11*12 = 666000;
a(13) = 1*2*3*4*5*6 + 7*8*9*10*11*12 + 13 = 666013;
a(14) = 1*2*3*4*5*6 + 7*8*9*10*11*12 + 13*14 = 666182; etc.
		

Crossrefs

Cf. A093361, (k=1) A000217, (k=2) A228958, (k=3) A319014, (k=4) A319205, (k=5) A319206, (k=6) this sequence, (k=7) A319208, (k=8) A319209, (k=9) A319211, (k=10) A319212.

Programs

  • Mathematica
    a[n_]:=Sum[(6*i)!/(6*i-6)!, {i, 1, Floor[n/6] }] + Sum[(1-Sign[Mod[n-j,6]])*Product[n-i+1, {i, 1, j}], {j, 1, 5}] ; Array[a, 40] (* Stefano Spezia, Sep 17 2018 *)
  • PARI
    Vec(x*(1 + x + 4*x^2 + 18*x^3 + 96*x^4 + 600*x^5 + 42*x^7 + 420*x^8 + 4410*x^9 + 49728*x^10 + 605640*x^11 - 15*x^12 - 153*x^13 - 504*x^14 + 9576*x^15 + 348096*x^16 + 8367240*x^17 + 40*x^18 + 172*x^19 - 968*x^20 - 24444*x^21 + 25200*x^22 + 17292240*x^23 - 45*x^24 - 33*x^25 + 1668*x^26 + 2610*x^27 - 361200*x^28 + 6939240*x^29 + 24*x^30 - 54*x^31 - 540*x^32 + 7650*x^33 - 61680*x^34 + 387240*x^35 - 5*x^36 + 25*x^37 - 80*x^38 + 180*x^39 - 240*x^40 + 120*x^41) / ((1 - x)^8*(1 + x)^7*(1 - x + x^2)^7*(1 + x + x^2)^7) + O(x^40)) \\ Colin Barker, Sep 14 2018

Formula

a(n) = Sum_{i=1..floor(n/6)} (6*i)!/(6*i-6)! + Sum_{j=1..5} (1-sign((n-j) mod 6)) * (Product_{i=1..j} n-i+1).
G.f.: x*(1 + x + 4*x^2 + 18*x^3 + 96*x^4 + 600*x^5 + 42*x^7 + 420*x^8 + 4410*x^9 + 49728*x^10 + 605640*x^11 - 15*x^12 - 153*x^13 - 504*x^14 + 9576*x^15 + 348096*x^16 + 8367240*x^17 + 40*x^18 + 172*x^19 - 968*x^20 - 24444*x^21 + 25200*x^22 + 17292240*x^23 - 45*x^24 - 33*x^25 + 1668*x^26 + 2610*x^27 - 361200*x^28 + 6939240*x^29 + 24*x^30 - 54*x^31 - 540*x^32 + 7650*x^33 - 61680*x^34 + 387240*x^35 - 5*x^36 + 25*x^37 - 80*x^38 + 180*x^39 - 240*x^40 + 120*x^41) / ((1 - x)^8*(1 + x)^7*(1 - x + x^2)^7*(1 + x + x^2)^7). - Colin Barker, Sep 14 2018
a(n) = a(n-1) + 7*a(n-6) - 7*a(n-7) - 21*a(n-12) + 21*a(n-13) + 35*a(n-18) - 35*a(n-19) - 35*a(n-24) + 35*a(n-25) + 21*a(n-30) - 21*a(n-31) - 7*a(n-36) + 7*a(n-37) + a(n-42) - a(n-43). - Wesley Ivan Hurt, Jun 20 2024

A319208 a(n) = 1*2*3*4*5*6*7 + 8*9*10*11*12*13*14 + 15*16*17*18*19*20*21 + ... + (up to n).

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 5048, 5112, 5760, 12960, 100080, 1240560, 17302320, 17302335, 17302560, 17306400, 17375760, 18697680, 45209520, 603353520, 603353542, 603354026, 603365664, 603657120, 611247120, 816480720, 6570915120, 6570915149, 6570915990
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 13 2018

Keywords

Comments

In general, for sequences that multiply the first k natural numbers, and then add the product of the next k natural numbers (preserving the order of operations up to n), we have a(n) = Sum_{i=1..floor(n/k)} (k*i)!/(k*i-k)! + Sum_{j=1..k-1} (1-sign((n-j) mod k)) * (Product_{i=1..j} n-i+1). Here, k=7.

Examples

			a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2*3 = 6;
a(4) = 1*2*3*4 = 24;
a(5) = 1*2*3*4*5 = 120;
a(6) = 1*2*3*4*5*6 = 720;
a(7) = 1*2*3*4*5*6*7 = 5040;
a(8) = 1*2*3*4*5*6*7 + 8 = 5048;
a(9) = 1*2*3*4*5*6*7 + 8*9 = 5112;
a(10) = 1*2*3*4*5*6*7 + 8*9*10 = 5760;
a(11) = 1*2*3*4*5*6*7 + 8*9*10*11 = 12960;
a(12) = 1*2*3*4*5*6*7 + 8*9*10*11*12 = 100080;
a(13) = 1*2*3*4*5*6*7 + 8*9*10*11*12*13 = 1240560;
a(14) = 1*2*3*4*5*6*7 + 8*9*10*11*12*13*14 = 17302320;
a(15) = 1*2*3*4*5*6*7 + 8*9*10*11*12*13*14 + 15 = 17302335;
a(16) = 1*2*3*4*5*6*7 + 8*9*10*11*12*13*14 + 15*16 = 17302560; etc.
		

Crossrefs

Cf. A093361, (k=1) A000217, (k=2) A228958, (k=3) A319014, (k=4) A319205, (k=5) A319206, (k=6) A319207, (k=7) this sequence, (k=8) A319209, (k=9) A319211, (k=10) A319212.

Programs

  • Mathematica
    Table[Total[Times@@@Partition[Range[n],UpTo[7]]],{n,30}] (* Harvey P. Dale, Aug 02 2020 *)

Formula

a(n) = Sum_{i=1..floor(n/7)} (7*i)!/(7*i-7)! + Sum_{j=1..6} (1-sign((n-j) mod 7)) * (Product_{i=1..j} n-i+1).

A319209 a(n) = 1*2*3*4*5*6*7*8 + 9*10*11*12*13*14*15*16 + 17*18*19*20*21*22*23*24 + ... + (up to n).

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 40320, 40329, 40410, 41310, 52200, 194760, 2202480, 32472720, 518958720, 518958737, 518959026, 518964534, 519075000, 521400600, 572680080, 1754550000, 30173149440, 30173149465, 30173150090, 30173166990, 30173640840, 30187400040
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 13 2018

Keywords

Comments

In general, for sequences that multiply the first k natural numbers, and then add the product of the next k natural numbers (preserving the order of operations up to n), we have a(n) = Sum_{i=1..floor(n/k)} (k*i)!/(k*i-k)! + Sum_{j=1..k-1} (1-sign((n-j) mod k)) * (Product_{i=1..j} n-i+1). Here, k=8.

Examples

			a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2*3 = 6;
a(4) = 1*2*3*4 = 24;
a(5) = 1*2*3*4*5 = 120;
a(6) = 1*2*3*4*5*6 = 720;
a(7) = 1*2*3*4*5*6*7 = 5040;
a(8) = 1*2*3*4*5*6*7*8 = 40320;
a(9) = 1*2*3*4*5*6*7*8 + 9 = 40329;
a(10) = 1*2*3*4*5*6*7*8 + 9*10 = 40410;
a(11) = 1*2*3*4*5*6*7*8 + 9*10*11 = 41310;
a(12) = 1*2*3*4*5*6*7*8 + 9*10*11*12 = 52200;
a(13) = 1*2*3*4*5*6*7*8 + 9*10*11*12*13 = 194760;
a(14) = 1*2*3*4*5*6*7*8 + 9*10*11*12*13*14 = 2202480;
a(15) = 1*2*3*4*5*6*7*8 + 9*10*11*12*13*14*15 = 32472720;
a(16) = 1*2*3*4*5*6*7*8 + 9*10*11*12*13*14*15*16 = 518958720;
a(17) = 1*2*3*4*5*6*7*8 + 9*10*11*12*13*14*15*16 + 17 = 518958737;
a(18) = 1*2*3*4*5*6*7*8 + 9*10*11*12*13*14*15*16 + 17*18 = 518959026; etc.
		

Crossrefs

Cf. A093361, (k=1) A000217, (k=2) A228958, (k=3) A319014, (k=4) A319205, (k=5) A319206, (k=6) A319207, (k=7) A319208, (k=8) this sequence, (k=9) A319211, (k=10) A319212.

Programs

  • Mathematica
    a[n_]:=Sum[(8*i)!/(8*i-8)!, {i, 1, Floor[n/8] }] + Sum[(1-Sign[Mod[n-j, 8]])*Product[n-i+1, {i, 1, j}], {j, 1, 7}] ; Array[a, 29] (* Stefano Spezia, Apr 18 2023 *)

Formula

a(n) = Sum_{i=1..floor(n/8)} (8*i)!/(8*i-8)! + Sum_{j=1..7} (1-sign((n-j) mod 8)) * (Product_{i=1..j} n-i+1).

A319211 a(n) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13*14*15*16*17*18 + 19*20*21*22*23*24*25*26*27 + ... + (up to n).

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 362890, 362990, 364200, 380040, 603120, 3966480, 58020480, 980542080, 17643588480, 17643588499, 17643588860, 17643596460, 17643764040, 17647626360, 17740497600, 20066316480, 80634516480, 1718398644480
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 13 2018

Keywords

Comments

In general, for sequences that multiply the first k natural numbers, and then add the product of the next k natural numbers (preserving the order of operations up to n), we have a(n) = Sum_{i=1..floor(n/k)} (k*i)!/(k*i-k)! + Sum_{j=1..k-1} (1-sign((n-j) mod k)) * (Product_{i=1..j} n-i+1). Here, k=9.

Examples

			a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2*3 = 6;
a(4) = 1*2*3*4 = 24;
a(5) = 1*2*3*4*5 = 120;
a(6) = 1*2*3*4*5*6 = 720;
a(7) = 1*2*3*4*5*6*7 = 5040;
a(8) = 1*2*3*4*5*6*7*8 = 40320;
a(9) = 1*2*3*4*5*6*7*8*9 = 362880;
a(10) = 1*2*3*4*5*6*7*8*9 + 10 = 362890;
a(11) = 1*2*3*4*5*6*7*8*9 + 10*11 = 362990;
a(12) = 1*2*3*4*5*6*7*8*9 + 10*11*12 = 364200;
a(13) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13 = 380040;
a(14) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13*14 = 603120;
a(15) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13*14*15 = 3966480;
a(16) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13*14*15*16 = 58020480;
a(17) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13*14*15*16*17 = 980542080;
a(18) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13*14*15*16*17*18 = 17643588480;
a(19) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13*14*15*16*17*18 + 19 = 17643588499; etc.
		

Crossrefs

Cf. A093361, (k=1) A000217, (k=2) A228958, (k=3) A319014, (k=4) A319205, (k=5) A319206, (k=6) A319207, (k=7) A319208, (k=8) A319209, (k=9) this sequence, (k=10) A319212.

Programs

  • Mathematica
    a[n_]:=Sum[(9*i)!/(9*i-9)!, {i, 1, Floor[n/9] }] + Sum[(1-Sign[Mod[n-j, 9]])*Product[n-i+1, {i, 1, j}], {j, 1, 8}] ; Array[a, 27] (* Stefano Spezia, Apr 18 2023 *)
    Table[Total[Times@@@Partition[Range[n],UpTo[9]]],{n,30}] (* Harvey P. Dale, Dec 04 2024 *)

Formula

a(n) = Sum_{i=1..floor(n/9)} (9*i)!/(9*i-9)! + Sum_{j=1..8} (1-sign((n-j) mod 9)) * (Product_{i=1..j} n-i+1).

A319212 a(n) = 1*2*3*4*5*6*7*8*9*10 + 11*12*13*14*15*16*17*18*19*20 + 21*22*23*24*25*26*27*28*29*30 + ... + (up to n).

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 3628811, 3628932, 3630516, 3652824, 3989160, 9394560, 101646720, 1767951360, 33525757440, 670446201600, 670446201621, 670446202062, 670446212226, 670446456624, 670452577200, 670611967200, 674921872800
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 13 2018

Keywords

Comments

In general, for sequences that multiply the first k natural numbers, and then add the product of the next k natural numbers (preserving the order of operations up to n), we have a(n) = Sum_{i=1..floor(n/k)} (k*i)!/(k*i-k)! + Sum_{j=1..k-1} (1-sign((n-j) mod k)) * (Product_{i=1..j} n-i+1). Here, k=10.

Examples

			a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2*3 = 6;
a(4) = 1*2*3*4 = 24;
a(5) = 1*2*3*4*5 = 120;
a(6) = 1*2*3*4*5*6 = 720;
a(7) = 1*2*3*4*5*6*7 = 5040;
a(8) = 1*2*3*4*5*6*7*8 = 40320;
a(9) = 1*2*3*4*5*6*7*8*9 = 362880;
a(10) = 1*2*3*4*5*6*7*8*9*10 = 3628800;
a(11) = 1*2*3*4*5*6*7*8*9*10 + 11 = 3628811;
a(12) = 1*2*3*4*5*6*7*8*9*10 + 11*12 = 3628932;
a(13) = 1*2*3*4*5*6*7*8*9*10 + 11*12*13 = 3630516;
a(14) = 1*2*3*4*5*6*7*8*9*10 + 11*12*13*14 = 3652824;
a(15) = 1*2*3*4*5*6*7*8*9*10 + 11*12*13*14*15 = 3989160;
a(16) = 1*2*3*4*5*6*7*8*9*10 + 11*12*13*14*15*16 = 9394560;
a(17) = 1*2*3*4*5*6*7*8*9*10 + 11*12*13*14*15*16*17 = 101646720;
a(18) = 1*2*3*4*5*6*7*8*9*10 + 11*12*13*14*15*16*17*18 = 1767951360;
a(19) = 1*2*3*4*5*6*7*8*9*10 + 11*12*13*14*15*16*17*18*19 = 33525757440;
a(20) = 1*2*3*4*5*6*7*8*9*10 + 11*12*13*14*15*16*17*18*19*20 = 670446201600;
etc.
		

Crossrefs

Cf. A093361, (k=1) A000217, (k=2) A228958, (k=3) A319014, (k=4) A319205, (k=5) A319206, (k=6) A319207, (k=7) A319208, (k=8) A319209, (k=9) A319211, (k=10) this sequence.

Programs

  • Mathematica
    a[n_]:=Sum[(10*i)!/(10*i-10)!, {i, 1, Floor[n/10] }] + Sum[(1-Sign[Mod[n-j,10]])*Product[n-i+1, {i, 1, j}], {j, 1, 9}] ; Array[a, 40] (* or *)
    CoefficientList[Series[x (1 + x + 4 x^2 + 18 x^3 + 96 x^4 + 600 x^5 + 4320 x^6 + 35280 x^7 + 322560 x^8 + 3265920 x^9 + 110 x^11 + 1540 x^12 + 22110 x^13 + 335280 x^14 + 5398800 x^15 + 92204640 x^16 + 1665916560 x^17 + 31754257920 x^18 + 636884519040 x^19 - 45 x^20 - 835 x^21 - 7040 x^22 + 2426160 x^24 + 99963600 x^25 + 3295369440 x^26 + 102515711760 x^27 + 3159608094720 x^28 + 98387160157440 x^29 + 240 x^30 + 2600 x^31 + 6400 x^32 - 384120 x^33 - 11000880 x^34 - 92637600 x^35 + 8150963040 x^36 + 682266206160 x^37 + 38076411985920 x^38 + 1874796686864640 x^39 - 630 x^40 - 4270 x^41 + 22120 x^42 + 1067820 x^43 + 8250000 x^44 - 525742800 x^45 - 23300782560 x^46 + 150285587760 x^47 + 93849442283520 x^48 + 9232053795296640 x^49 + 1008 x^50 + 3668 x^51 - 67928 x^52 - 1130796 x^53 + 15384048 x^54 + 861484800 x^55 - 7313090400 x^56 - 1717130091600 x^57 + 1723567507200 x^58 + 14964584346835200 x^59 - 1050 x^60 - 910 x^61 + 81760 x^62 + 291240 x^63 - 27736080 x^64 - 136792800 x^65 + 29138931360 x^66 - 117003292560 x^67 - 93887882161920 x^68 + 8480246509848960 x^69 + 720 x^70 - 1240 x^71 - 49760 x^72 + 371400 x^73 + 13094640 x^74 - 362037600 x^75 - 4579273440 x^76 + 749464032240 x^77 - 39511261278720 x^78 + 1564662885730560 x^79 - 315 x^80 + 1325 x^81 + 13300 x^82 - 301230 x^83 + 553680 x^84 + 130188600 x^85 - 5213255040 x^86 + 144639915840 x^87 - 3405078673920 x^88 + 72262987695360 x^89 + 80 x^90 - 530 x^91 + 180 x^92 + 60030 x^93 - 1288800 x^94 + 20098800 x^95 - 270829440 x^96 + 3295434240 x^97 - 36561611520 x^98 + 368739423360 x^99 - 9 x^100 + 81 x^101 - 576 x^102 + 3528 x^103 - 18144 x^104 + 75600 x^105 - 241920 x^106 + 544320 x^107 - 725760 x^108 + 362880 x^109)/((1 - x)^12 (1 + x)^11 (1 + x^2 + x^4 + x^6 + x^8)^11), {x, 0, 40}], x] (* Stefano Spezia, Sep 17 2018 *)

Formula

a(n) = Sum_{i=1..floor(n/10)} (10*i)!/(10*i-10)! + Sum_{j=1..9} (1-sign((n-j) mod 10)) * (Product_{i=1..j} n-i+1).
From Stefano Spezia, Sep 17 2018: (Start)
G.f.: x*(1 + x + 4*x^2 + 18*x^3 + 96*x^4 + 600*x^5 + 4320*x^6 + 35280*x^7 + 322560*x^8 + 3265920*x^9 + 110*x^11 + 1540*x^12 + 22110*x^13 + 335280*x^14 + 5398800*x^15 + 92204640*x^16 + 1665916560*x^17 + 31754257920*x^18 + 636884519040*x^19 - 45*x^20 - 835*x^21 - 7040*x^22 + 2426160*x^24 + 99963600*x^25 + 3295369440*x^26 + 102515711760*x^27 + 3159608094720*x^28 + 98387160157440*x^29 + 240*x^30 + 2600*x^31 + 6400*x^32 - 384120*x^33 - 11000880*x^34 - 92637600*x^35 + 8150963040*x^36 + 682266206160*x^37 + 38076411985920*x^38 + 1874796686864640*x^39 - 630*x^40 - 4270*x^41 + 22120*x^42 + 1067820*x^43 + 8250000*x^44 - 525742800*x^45 - 23300782560*x^46 + 150285587760*x^47 + 93849442283520*x^48 + 9232053795296640*x^49 + 1008*x^50 + 3668*x^51 - 67928*x^52 - 1130796*x^53 + 15384048*x^54 + 861484800*x^55 - 7313090400*x^56 - 1717130091600*x^57 + 1723567507200*x^58 + 14964584346835200*x^59 - 1050*x^60 - 910*x^61 + 81760*x^62 + 291240*x^63 - 27736080*x^64 - 136792800*x^65 + 29138931360*x^66 - 117003292560*x^67 - 93887882161920*x^68 + 8480246509848960*x^69 + 720*x^70 - 1240*x^71 - 49760*x^72 + 371400*x^73 + 13094640*x^74 - 362037600*x^75 - 4579273440*x^76 + 749464032240*x^77 - 39511261278720*x^78 + 1564662885730560*x^79 - 315*x^80 + 1325*x^81 + 13300*x^82 - 301230*x^83 + 553680*x^84 + 130188600*x^85 - 5213255040*x^86 + 144639915840*x^87 - 3405078673920*x^88 + 72262987695360*x^89 + 80*x^90 - 530*x^91 + 180*x^92 + 60030*x^93 - 1288800*x^94 + 20098800*x^95 - 270829440*x^96 + 3295434240*x^97 - 36561611520*x^98 + 368739423360*x^99 - 9*x^100 + 81*x^101 - 576*x^102 + 3528*x^103 - 18144*x^104 + 75600*x^105 - 241920*x^106 + 544320*x^107 - 725760*x^108 + 362880*x^109)/((1 - x)^12*(1 + x)^11*(1 + x^2 + x^4 + x^6 + x^8)^11).
(End)

A319543 a(n) = 1*2*3 - 4*5*6 + 7*8*9 - 10*11*12 + 13*14*15 - ... + (up to n).

Original entry on oeis.org

1, 2, 6, 2, -14, -114, -107, -58, 390, 380, 280, -930, -917, -748, 1800, 1784, 1528, -3096, -3077, -2716, 4884, 4862, 4378, -7260, -7235, -6610, 10290, 10262, 9478, -14070, -14039, -13078, 18666, 18632, 17476, -24174, -24137, -22768, 30660, 30620, 29020
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 22 2018

Keywords

Comments

In general, for alternating sequences that multiply the first k natural numbers, and subtract/add the products of the next k natural numbers (preserving the order of operations up to n), we have a(n) = (-1)^floor(n/k) * Sum_{i=1..k-1} (1-sign((n-i) mod k)) * (Product_{j=1..i} (n-j+1)) + Sum_{i=1..n} (-1)^(floor(i/k)+1) * (1-sign(i mod k)) * (Product_{j=1..k} (i-j+1)). Here k=3.
An alternating version of A319014.

Examples

			a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2*3 = 6;
a(4) = 1*2*3 - 4 = 2;
a(5) = 1*2*3 - 4*5 = -14;
a(6) = 1*2*3 - 4*5*6 = -114;
a(7) = 1*2*3 - 4*5*6 + 7 = -107;
a(8) = 1*2*3 - 4*5*6 + 7*8 = -58;
a(9) = 1*2*3 - 4*5*6 + 7*8*9 = 390;
a(10) = 1*2*3 - 4*5*6 + 7*8*9 - 10 = 380;
a(11) = 1*2*3 - 4*5*6 + 7*8*9 - 10*11 = 280;
a(12) = 1*2*3 - 4*5*6 + 7*8*9 - 10*11*12 = -930;
a(13) = 1*2*3 - 4*5*6 + 7*8*9 - 10*11*12 + 13 = -917;
a(14) = 1*2*3 - 4*5*6 + 7*8*9 - 10*11*12 + 13*14 = -748;
a(15) = 1*2*3 - 4*5*6 + 7*8*9 - 10*11*12 + 13*14*15 = 1800; etc.
		

Crossrefs

For similar sequences, see: A001057 (k=1), A319373 (k=2), this sequence (k=3), A319544 (k=4), A319545 (k=5), A319546 (k=6), A319547 (k=7), A319549 (k=8), A319550 (k=9), A319551 (k=10).
Cf. A319014.

Programs

  • Maple
    seq(coeff(series((x*(1+x+4*x^2-12*x^4-84*x^5-3*x^6-9*x^7+72*x^8-2*x^9+4*x^10-2*x^11))/((1-x)*(1+x)^4*(1-x+x^2)^4),x,n+1), x, n), n = 1 .. 45); # Muniru A Asiru, Oct 01 2018
  • Mathematica
    LinearRecurrence[{1, 0, -4, 4, 0, -6, 6, 0, -4, 4, 0, -1, 1},{1, 2, 6, 2, -14, -114, -107, -58, 390, 380, 280, -930, -917}, 40] (* Stefano Spezia, Sep 23 2018 *)
  • PARI
    Vec(x*(1 + x + 4*x^2 - 12*x^4 - 84*x^5 - 3*x^6 - 9*x^7 + 72*x^8 - 2*x^9 + 4*x^10 - 2*x^11) / ((1 - x)*(1 + x)^4*(1 - x + x^2)^4) + O(x^40)) \\ Colin Barker, Sep 23 2018

Formula

a(n) = (-1)^floor(n/3) * Sum_{i=1..2} (1-sign((n-i) mod 3)) * (Product_{j=1..i} (n-j+1)) + Sum_{i=1..n} (-1)^(floor(i/3)+1) * (1-sign(i mod 3)) * (Product_{j=1..3} (i-j+1)).
From Colin Barker, Sep 23 2018: (Start)
G.f.: x*(1 + x + 4*x^2 - 12*x^4 - 84*x^5 - 3*x^6 - 9*x^7 + 72*x^8 - 2*x^9 + 4*x^10 - 2*x^11) / ((1 - x)*(1 + x)^4*(1 - x + x^2)^4).
a(n) = a(n-1) - 4*a(n-3) + 4*a(n-4) - 6*a(n-6) + 6*a(n-7) - 4*a(n-9) + 4*a(n-10) - a(n-12) + a(n-13) for n>13.
(End)

A305189 a(n) = 1*2 + 3 + 4*5 + 6 + 7*8 + 9 + 10*11 + 12 + ... + (up to n).

Original entry on oeis.org

1, 2, 5, 9, 25, 31, 38, 87, 96, 106, 206, 218, 231, 400, 415, 431, 687, 705, 724, 1085, 1106, 1128, 1612, 1636, 1661, 2286, 2313, 2341, 3125, 3155, 3186, 4147, 4180, 4214, 5370, 5406, 5443, 6812, 6851, 6891, 8491, 8533, 8576, 10425, 10470, 10516, 12632
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 15 2018

Keywords

Examples

			a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2 + 3 = 5;
a(4) = 1*2 + 3 + 4 = 9;
a(5) = 1*2 + 3 + 4*5 = 25;
a(6) = 1*2 + 3 + 4*5 + 6 = 31;
a(7) = 1*2 + 3 + 4*5 + 6 + 7 = 38;
a(8) = 1*2 + 3 + 4*5 + 6 + 7*8 = 87;
a(9) = 1*2 + 3 + 4*5 + 6 + 7*8 + 9 = 96;
a(10) = 1*2 + 3 + 4*5 + 6 + 7*8 + 9 + 10 = 106;
a(11) = 1*2 + 3 + 4*5 + 6 + 7*8 + 9 + 10*11 = 206;
a(12) = 1*2 + 3 + 4*5 + 6 + 7*8 + 9 + 10*11 + 12 = 218; etc.
		

Crossrefs

Programs

  • Maple
    seq(coeff(series((x*(1+x+3*x^2+x^3+13*x^4-3*x^5-2*x^6+4*x^7))/((1-x)^4*(1+x+x^2)^3),x,n+1), x, n), n = 1 .. 50); # Muniru A Asiru, Sep 16 2018
  • Mathematica
    Table[3*Floor[n/3]*(Floor[n/3] + 1)/2 + Floor[(n + 1)/3]*(3*Floor[(n + 1)/3]^2 - 1) + n*(Floor[(n - 1)/3] - Floor[(n - 2)/3]), {n, 50}]
    LinearRecurrence[{1,0,3,-3,0,-3,3,0,1,-1 }, {1, 2, 5, 9, 25, 31, 38, 87, 96, 106}, 50] (* Stefano Spezia, Sep 16 2018 *)
  • PARI
    Vec(x*(1 + x + 3*x^2 + x^3 + 13*x^4 - 3*x^5 - 2*x^6 + 4*x^7) / ((1 - x)^4*(1 + x + x^2)^3) + O(x^40)) \\ Colin Barker, Sep 16 2018

Formula

a(n) = 3*floor(n/3)*(floor(n/3) + 1)/2 + floor((n+1)/3)*(3*floor((n+1)/3)^2 - 1) + n*(floor((n-1)/3) - floor((n-2)/3)).
From Colin Barker, Sep 16 2018: (Start)
G.f.: x*(1 + x + 3*x^2 + x^3 + 13*x^4 - 3*x^5 - 2*x^6 + 4*x^7) / ((1 - x)^4*(1 + x + x^2)^3).
a(n) = a(n-1) + 3*a(n-3) - 3*a(n-4) - 3*a(n-6) + 3*a(n-7) + a(n-9) - a(n-10) for n>10.
(End)
Showing 1-10 of 13 results. Next