cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A319014 a(n) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17*18 + ... + (up to n).

Original entry on oeis.org

1, 2, 6, 10, 26, 126, 133, 182, 630, 640, 740, 1950, 1963, 2132, 4680, 4696, 4952, 9576, 9595, 9956, 17556, 17578, 18062, 29700, 29725, 30350, 47250, 47278, 48062, 71610, 71641, 72602, 104346, 104380, 105536, 147186, 147223, 148592, 202020, 202060, 203660
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 07 2018

Keywords

Comments

In general, for sequences that multiply the first k natural numbers, and then add the product of the next k natural numbers (preserving the order of operations up to n), we have a(n) = Sum_{i=1..floor(n/k)} (k*i)!/(k*i-k)! + Sum_{j=1..k-1} (1-sign((n-j) mod k)) * (Product_{i=1..j} n-i+1). Here, k=3.

Examples

			a(1)  = 1;
a(2)  = 1*2 = 2;
a(3)  = 1*2*3 = 6;
a(4)  = 1*2*3 + 4 = 10;
a(5)  = 1*2*3 + 4*5 = 26;
a(6)  = 1*2*3 + 4*5*6 = 126;
a(7)  = 1*2*3 + 4*5*6 + 7 = 133;
a(8)  = 1*2*3 + 4*5*6 + 7*8 = 182;
a(9)  = 1*2*3 + 4*5*6 + 7*8*9 = 630;
a(10) = 1*2*3 + 4*5*6 + 7*8*9 + 10 = 640;
a(11) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11 = 740;
a(12) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 = 1950;
a(13) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13 = 1963;
a(14) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14 = 2132;
a(15) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 = 4680;
a(16) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16 = 4696;
a(17) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17 = 4952;
a(18) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17*18 = 9576;
a(19) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17*18 + 19 = 9595;
etc.
		

Crossrefs

Cf. A093361, (k=1) A000217, (k=2) A228958, (k=3) this sequence, (k=4) A319205, (k=5) A319206, (k=6) A319207, (k=7) A319208, (k=8) A319209, (k=9) A319211, (k=10) A319212.
Cf. A049347, A061347, A268685 (trisection).

Programs

  • Mathematica
    CoefficientList[Series[(1 + x + 4*x^2 + 12*x^4 + 84*x^5 - 3*x^6 - 9*x^7 + 72*x^8 + 2*x^9 - 4*x^10 + 2*x^11)/((1 - x)^5*(1 + x + x^2)^4), {x, 0, 50}], x] (* after Colin Barker *)
  • PARI
    Vec(x*(1 + x + 4*x^2 + 12*x^4 + 84*x^5 - 3*x^6 - 9*x^7 + 72*x^8 + 2*x^9 - 4*x^10 + 2*x^11) / ((1 - x)^5*(1 + x + x^2)^4) + O(x^50)) \\ Colin Barker, Sep 08 2018

Formula

a(n) = Sum_{i=1..floor(n/3)} (3*i)!/(3*i-3)! + Sum_{j=1..2} (1-sign((n-j) mod 3)) * (Product_{i=1..j} n-i+1).
From Colin Barker, Sep 08 2018: (Start)
G.f.: x*(1 + x + 4*x^2 + 12*x^4 + 84*x^5 - 3*x^6 - 9*x^7 + 72*x^8 + 2*x^9 - 4*x^10 + 2*x^11) / ((1 - x)^5*(1 + x + x^2)^4).
a(n) = a(n-1) + 4*a(n-3) - 4*a(n-4) - 6*a(n-6) + 6*a(n-7) + 4*a(n-9) - 4*a(n-10) - a(n-12) + a(n-13) for n>13.
(End)
a(3*k) = 3*k*(k+1)*(3*k-2)*(3*k+1)/4, a(3*k+1) = a(3*k) + 3*k + 1, a(3*k+2) = a(3*k) + (3*k+2)*(3*k+1). - Giovanni Resta, Sep 08 2018
a(n) = (3*n^4 - 6*n^3 + 9*n^2 + 6*n - 8 - 2*(3*n^3 - 6*n^2 - 6*n + 2)*A061347(n-3) + 6*(n^3 - 6*n^2 + 6*n + 2)*A049347(n-2))/36. - Stefano Spezia, Apr 23 2023

A319205 a(n) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16 + 17*18*19*20 + ... + (up to n).

Original entry on oeis.org

1, 2, 6, 24, 29, 54, 234, 1704, 1713, 1794, 2694, 13584, 13597, 13766, 16314, 57264, 57281, 57570, 63078, 173544, 173565, 174006, 184170, 428568, 428593, 429218, 446118, 919968, 919997, 920838, 946938, 1783008, 1783041, 1784130, 1822278, 3196728, 3196765
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 13 2018

Keywords

Comments

In general, for sequences that multiply the first k natural numbers, and then add the product of the next k natural numbers (preserving the order of operations up to n), we have a(n) = Sum_{i=1..floor(n/k)} (k*i)!/(k*i-k)! + Sum_{j=1..k-1} (1-sign((n-j) mod k)) * (Product_{i=1..j} n-i+1). Here, k=4.

Examples

			a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2*3 = 6;
a(4) = 1*2*3*4 = 24;
a(5) = 1*2*3*4 + 5 = 29;
a(6) = 1*2*3*4 + 5*6 = 54;
a(7) = 1*2*3*4 + 5*6*7 = 234;
a(8) = 1*2*3*4 + 5*6*7*8 = 1704;
a(9) = 1*2*3*4 + 5*6*7*8 + 9 = 1713;
a(10) = 1*2*3*4 + 5*6*7*8 + 9*10 = 1794;
a(11) = 1*2*3*4 + 5*6*7*8 + 9*10*11 = 2694;
a(12) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 = 13584;
a(13) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13 = 13597;
a(14) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14 = 13766;
a(15) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15 = 16314;
a(16) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16 = 57264;
a(17) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16 + 17 = 57281;
a(18) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16 + 17*18 = 57570;
a(19) = 1*2*3*4 + 5*6*7*8 + 9*10*11*12 + 13*14*15*16 + 17*18*19 = 63078;
etc.
		

Crossrefs

Cf. A093361, (k=1) A000217, (k=2) A228958, (k=3) A319014, (k=4) this sequence, (k=5) A319206, (k=6) A319207, (k=7) A319208, (k=8) A319209, (k=9) A319211, (k=10) A319212.

Programs

  • Mathematica
    a[n_]:=Sum[(4*i)!/(4*i-4)!, {i, 1, Floor[n/4] }] + Sum[(1-Sign[Mod[n-j,4]])*Product[n-i+1, {i, 1, j}], {j, 1, 3}] ; Array[a, 40] (* Stefano Spezia, Sep 17 2018 *)
  • PARI
    Vec(x*(1 + x + 4*x^2 + 18*x^3 + 20*x^5 + 160*x^6 + 1380*x^7 - 6*x^8 - 34*x^9 + 40*x^10 + 3720*x^11 + 8*x^12 + 4*x^13 - 192*x^14 + 1020*x^15 - 3*x^16 + 9*x^17 - 12*x^18 + 6*x^19) / ((1 - x)^6*(1 + x)^5*(1 + x^2)^5) + O(x^40)) \\ Colin Barker, Sep 14 2018

Formula

a(n) = Sum_{i=1..floor(n/4)} (4*i)!/(4*i-4)! + Sum_{j=1..3} (1-sign((n-j) mod 4)) * (Product_{i=1..j} n-i+1).
From Colin Barker, Sep 14 2018: (Start)
G.f.: x*(1 + x + 4*x^2 + 18*x^3 + 20*x^5 + 160*x^6 + 1380*x^7 - 6*x^8 - 34*x^9 + 40*x^10 + 3720*x^11 + 8*x^12 + 4*x^13 - 192*x^14 + 1020*x^15 - 3*x^16 + 9*x^17 - 12*x^18 + 6*x^19) / ((1 - x)^6*(1 + x)^5*(1 + x^2)^5).
a(n) = a(n-1) + 5*a(n-4) - 5*a(n-5) - 10*a(n-8) + 10*a(n-9) + 10*a(n-12) - 10*a(n-13) - 5*a(n-16) + 5*a(n-17) + a(n-20) - a(n-21) for n>21.
(End)

A319206 a(n) = 1*2*3*4*5 + 6*7*8*9*10 + 11*12*13*14*15 + ... + (up to n).

Original entry on oeis.org

1, 2, 6, 24, 120, 126, 162, 456, 3144, 30360, 30371, 30492, 32076, 54384, 390720, 390736, 390992, 395616, 483744, 2251200, 2251221, 2251662, 2261826, 2506224, 8626800, 8626826, 8627502, 8646456, 9196824, 25727520, 25727551, 25728512, 25760256, 26840544
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 13 2018

Keywords

Comments

In general, for sequences that multiply the first k natural numbers, and then add the product of the next k natural numbers (preserving the order of operations up to n), we have a(n) = Sum_{i=1..floor(n/k)} (k*i)!/(k*i-k)! + Sum_{j=1..k-1} (1-sign((n-j) mod k)) * (Product_{i=1..j} n-i+1). Here, k=5.

Examples

			a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2*3 = 6;
a(4) = 1*2*3*4 = 24;
a(5) = 1*2*3*4*5 = 120;
a(6) = 1*2*3*4*5 + 6 = 126;
a(7) = 1*2*3*4*5 + 6*7 = 162;
a(8) = 1*2*3*4*5 + 6*7*8 = 456;
a(9) = 1*2*3*4*5 + 6*7*8*9 = 3144;
a(10) = 1*2*3*4*5 + 6*7*8*9*10 = 30360;
a(11) = 1*2*3*4*5 + 6*7*8*9*10 + 11 = 30371;
a(12) = 1*2*3*4*5 + 6*7*8*9*10 + 11*12 = 30492; etc.
		

Crossrefs

Cf. A093361, (k=1) A000217, (k=2) A228958, (k=3) A319014, (k=4) A319205, (k=5) this sequence, (k=6) A319207, (k=7) A319208, (k=8) A319209, (k=9) A319211, (k=10) A319212.

Programs

  • Mathematica
    a[n_]:=Sum[(5*i)!/(5*i-5)!, {i, 1, Floor[n/5] }] + Sum[(1-Sign[Mod[n-j, 5]])*Product[n-i+1, {i, 1, j}], {j, 1, 4}] ; Array[a, 34] (* Stefano Spezia, Apr 18 2023 *)
  • PARI
    Vec(x*(1 + x + 4*x^2 + 18*x^3 + 96*x^4 + 30*x^6 + 270*x^7 + 2580*x^8 + 26640*x^9 - 10*x^10 - 80*x^11 - 120*x^12 + 6450*x^13 + 174480*x^14 + 20*x^15 + 50*x^16 - 550*x^17 - 5760*x^18 + 155760*x^19 - 15*x^20 + 15*x^21 + 360*x^22 - 3240*x^23 + 18000*x^24 + 4*x^25 - 16*x^26 + 36*x^27 - 48*x^28 + 24*x^29) / ((1 - x)^7*(1 + x + x^2 + x^3 + x^4)^6) + O(x^40)) \\ Colin Barker, Sep 14 2018

Formula

a(n) = Sum_{i=1..floor(n/5)} (5*i)!/(5*i-5)! + Sum_{j=1..4} (1-sign((n-j) mod 5)) * (Product_{i=1..j} n-i+1).
From Colin Barker, Sep 14 2018: (Start)
G.f.: x*(1 + x + 4*x^2 + 18*x^3 + 96*x^4 + 30*x^6 + 270*x^7 + 2580*x^8 + 26640*x^9 - 10*x^10 - 80*x^11 - 120*x^12 + 6450*x^13 + 174480*x^14 + 20*x^15 + 50*x^16 - 550*x^17 - 5760*x^18 + 155760*x^19 - 15*x^20 + 15*x^21 + 360*x^22 - 3240*x^23 + 18000*x^24 + 4*x^25 - 16*x^26 + 36*x^27 - 48*x^28 + 24*x^29) / ((1 - x)^7*(1 + x + x^2 + x^3 + x^4)^6).
a(n) = a(n-1) + 6*a(n-5) - 6*a(n-6) - 15*a(n-10) + 15*a(n-11) + 20*a(n-15) - 20*a(n-16) - 15*a(n-20) + 15*a(n-21) + 6*a(n-25) - 6*a(n-26) - a(n-30) + a(n-31) for n>31.
(End)

A319207 a(n) = 1*2*3*4*5*6 + 7*8*9*10*11*12 + 13*14*15*16*17*18 + ... + (up to n).

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 727, 776, 1224, 5760, 56160, 666000, 666013, 666182, 668730, 709680, 1408560, 14032080, 14032099, 14032460, 14040060, 14207640, 18069960, 110941200, 110941225, 110941850, 110958750, 111432600, 125191800, 538459200, 538459231, 538460192
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 13 2018

Keywords

Comments

In general, for sequences that multiply the first k natural numbers, and then add the product of the next k natural numbers (preserving the order of operations up to n), we have a(n) = Sum_{i=1..floor(n/k)} (k*i)!/(k*i-k)! + Sum_{j=1..k-1} (1-sign((n-j) mod k)) * (Product_{i=1..j} n-i+1). Here, k=6.

Examples

			a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2*3 = 6;
a(4) = 1*2*3*4 = 24;
a(5) = 1*2*3*4*5 = 120;
a(6) = 1*2*3*4*5*6 = 720;
a(7) = 1*2*3*4*5*6 + 7 = 727;
a(8) = 1*2*3*4*5*6 + 7*8 = 776;
a(9) = 1*2*3*4*5*6 + 7*8*9 = 1224;
a(10) = 1*2*3*4*5*6 + 7*8*9*10 = 5760;
a(11) = 1*2*3*4*5*6 + 7*8*9*10*11 = 56160;
a(12) = 1*2*3*4*5*6 + 7*8*9*10*11*12 = 666000;
a(13) = 1*2*3*4*5*6 + 7*8*9*10*11*12 + 13 = 666013;
a(14) = 1*2*3*4*5*6 + 7*8*9*10*11*12 + 13*14 = 666182; etc.
		

Crossrefs

Cf. A093361, (k=1) A000217, (k=2) A228958, (k=3) A319014, (k=4) A319205, (k=5) A319206, (k=6) this sequence, (k=7) A319208, (k=8) A319209, (k=9) A319211, (k=10) A319212.

Programs

  • Mathematica
    a[n_]:=Sum[(6*i)!/(6*i-6)!, {i, 1, Floor[n/6] }] + Sum[(1-Sign[Mod[n-j,6]])*Product[n-i+1, {i, 1, j}], {j, 1, 5}] ; Array[a, 40] (* Stefano Spezia, Sep 17 2018 *)
  • PARI
    Vec(x*(1 + x + 4*x^2 + 18*x^3 + 96*x^4 + 600*x^5 + 42*x^7 + 420*x^8 + 4410*x^9 + 49728*x^10 + 605640*x^11 - 15*x^12 - 153*x^13 - 504*x^14 + 9576*x^15 + 348096*x^16 + 8367240*x^17 + 40*x^18 + 172*x^19 - 968*x^20 - 24444*x^21 + 25200*x^22 + 17292240*x^23 - 45*x^24 - 33*x^25 + 1668*x^26 + 2610*x^27 - 361200*x^28 + 6939240*x^29 + 24*x^30 - 54*x^31 - 540*x^32 + 7650*x^33 - 61680*x^34 + 387240*x^35 - 5*x^36 + 25*x^37 - 80*x^38 + 180*x^39 - 240*x^40 + 120*x^41) / ((1 - x)^8*(1 + x)^7*(1 - x + x^2)^7*(1 + x + x^2)^7) + O(x^40)) \\ Colin Barker, Sep 14 2018

Formula

a(n) = Sum_{i=1..floor(n/6)} (6*i)!/(6*i-6)! + Sum_{j=1..5} (1-sign((n-j) mod 6)) * (Product_{i=1..j} n-i+1).
G.f.: x*(1 + x + 4*x^2 + 18*x^3 + 96*x^4 + 600*x^5 + 42*x^7 + 420*x^8 + 4410*x^9 + 49728*x^10 + 605640*x^11 - 15*x^12 - 153*x^13 - 504*x^14 + 9576*x^15 + 348096*x^16 + 8367240*x^17 + 40*x^18 + 172*x^19 - 968*x^20 - 24444*x^21 + 25200*x^22 + 17292240*x^23 - 45*x^24 - 33*x^25 + 1668*x^26 + 2610*x^27 - 361200*x^28 + 6939240*x^29 + 24*x^30 - 54*x^31 - 540*x^32 + 7650*x^33 - 61680*x^34 + 387240*x^35 - 5*x^36 + 25*x^37 - 80*x^38 + 180*x^39 - 240*x^40 + 120*x^41) / ((1 - x)^8*(1 + x)^7*(1 - x + x^2)^7*(1 + x + x^2)^7). - Colin Barker, Sep 14 2018
a(n) = a(n-1) + 7*a(n-6) - 7*a(n-7) - 21*a(n-12) + 21*a(n-13) + 35*a(n-18) - 35*a(n-19) - 35*a(n-24) + 35*a(n-25) + 21*a(n-30) - 21*a(n-31) - 7*a(n-36) + 7*a(n-37) + a(n-42) - a(n-43). - Wesley Ivan Hurt, Jun 20 2024

A319208 a(n) = 1*2*3*4*5*6*7 + 8*9*10*11*12*13*14 + 15*16*17*18*19*20*21 + ... + (up to n).

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 5048, 5112, 5760, 12960, 100080, 1240560, 17302320, 17302335, 17302560, 17306400, 17375760, 18697680, 45209520, 603353520, 603353542, 603354026, 603365664, 603657120, 611247120, 816480720, 6570915120, 6570915149, 6570915990
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 13 2018

Keywords

Comments

In general, for sequences that multiply the first k natural numbers, and then add the product of the next k natural numbers (preserving the order of operations up to n), we have a(n) = Sum_{i=1..floor(n/k)} (k*i)!/(k*i-k)! + Sum_{j=1..k-1} (1-sign((n-j) mod k)) * (Product_{i=1..j} n-i+1). Here, k=7.

Examples

			a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2*3 = 6;
a(4) = 1*2*3*4 = 24;
a(5) = 1*2*3*4*5 = 120;
a(6) = 1*2*3*4*5*6 = 720;
a(7) = 1*2*3*4*5*6*7 = 5040;
a(8) = 1*2*3*4*5*6*7 + 8 = 5048;
a(9) = 1*2*3*4*5*6*7 + 8*9 = 5112;
a(10) = 1*2*3*4*5*6*7 + 8*9*10 = 5760;
a(11) = 1*2*3*4*5*6*7 + 8*9*10*11 = 12960;
a(12) = 1*2*3*4*5*6*7 + 8*9*10*11*12 = 100080;
a(13) = 1*2*3*4*5*6*7 + 8*9*10*11*12*13 = 1240560;
a(14) = 1*2*3*4*5*6*7 + 8*9*10*11*12*13*14 = 17302320;
a(15) = 1*2*3*4*5*6*7 + 8*9*10*11*12*13*14 + 15 = 17302335;
a(16) = 1*2*3*4*5*6*7 + 8*9*10*11*12*13*14 + 15*16 = 17302560; etc.
		

Crossrefs

Cf. A093361, (k=1) A000217, (k=2) A228958, (k=3) A319014, (k=4) A319205, (k=5) A319206, (k=6) A319207, (k=7) this sequence, (k=8) A319209, (k=9) A319211, (k=10) A319212.

Programs

  • Mathematica
    Table[Total[Times@@@Partition[Range[n],UpTo[7]]],{n,30}] (* Harvey P. Dale, Aug 02 2020 *)

Formula

a(n) = Sum_{i=1..floor(n/7)} (7*i)!/(7*i-7)! + Sum_{j=1..6} (1-sign((n-j) mod 7)) * (Product_{i=1..j} n-i+1).

A319209 a(n) = 1*2*3*4*5*6*7*8 + 9*10*11*12*13*14*15*16 + 17*18*19*20*21*22*23*24 + ... + (up to n).

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 40320, 40329, 40410, 41310, 52200, 194760, 2202480, 32472720, 518958720, 518958737, 518959026, 518964534, 519075000, 521400600, 572680080, 1754550000, 30173149440, 30173149465, 30173150090, 30173166990, 30173640840, 30187400040
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 13 2018

Keywords

Comments

In general, for sequences that multiply the first k natural numbers, and then add the product of the next k natural numbers (preserving the order of operations up to n), we have a(n) = Sum_{i=1..floor(n/k)} (k*i)!/(k*i-k)! + Sum_{j=1..k-1} (1-sign((n-j) mod k)) * (Product_{i=1..j} n-i+1). Here, k=8.

Examples

			a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2*3 = 6;
a(4) = 1*2*3*4 = 24;
a(5) = 1*2*3*4*5 = 120;
a(6) = 1*2*3*4*5*6 = 720;
a(7) = 1*2*3*4*5*6*7 = 5040;
a(8) = 1*2*3*4*5*6*7*8 = 40320;
a(9) = 1*2*3*4*5*6*7*8 + 9 = 40329;
a(10) = 1*2*3*4*5*6*7*8 + 9*10 = 40410;
a(11) = 1*2*3*4*5*6*7*8 + 9*10*11 = 41310;
a(12) = 1*2*3*4*5*6*7*8 + 9*10*11*12 = 52200;
a(13) = 1*2*3*4*5*6*7*8 + 9*10*11*12*13 = 194760;
a(14) = 1*2*3*4*5*6*7*8 + 9*10*11*12*13*14 = 2202480;
a(15) = 1*2*3*4*5*6*7*8 + 9*10*11*12*13*14*15 = 32472720;
a(16) = 1*2*3*4*5*6*7*8 + 9*10*11*12*13*14*15*16 = 518958720;
a(17) = 1*2*3*4*5*6*7*8 + 9*10*11*12*13*14*15*16 + 17 = 518958737;
a(18) = 1*2*3*4*5*6*7*8 + 9*10*11*12*13*14*15*16 + 17*18 = 518959026; etc.
		

Crossrefs

Cf. A093361, (k=1) A000217, (k=2) A228958, (k=3) A319014, (k=4) A319205, (k=5) A319206, (k=6) A319207, (k=7) A319208, (k=8) this sequence, (k=9) A319211, (k=10) A319212.

Programs

  • Mathematica
    a[n_]:=Sum[(8*i)!/(8*i-8)!, {i, 1, Floor[n/8] }] + Sum[(1-Sign[Mod[n-j, 8]])*Product[n-i+1, {i, 1, j}], {j, 1, 7}] ; Array[a, 29] (* Stefano Spezia, Apr 18 2023 *)

Formula

a(n) = Sum_{i=1..floor(n/8)} (8*i)!/(8*i-8)! + Sum_{j=1..7} (1-sign((n-j) mod 8)) * (Product_{i=1..j} n-i+1).

A319211 a(n) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13*14*15*16*17*18 + 19*20*21*22*23*24*25*26*27 + ... + (up to n).

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 362890, 362990, 364200, 380040, 603120, 3966480, 58020480, 980542080, 17643588480, 17643588499, 17643588860, 17643596460, 17643764040, 17647626360, 17740497600, 20066316480, 80634516480, 1718398644480
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 13 2018

Keywords

Comments

In general, for sequences that multiply the first k natural numbers, and then add the product of the next k natural numbers (preserving the order of operations up to n), we have a(n) = Sum_{i=1..floor(n/k)} (k*i)!/(k*i-k)! + Sum_{j=1..k-1} (1-sign((n-j) mod k)) * (Product_{i=1..j} n-i+1). Here, k=9.

Examples

			a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2*3 = 6;
a(4) = 1*2*3*4 = 24;
a(5) = 1*2*3*4*5 = 120;
a(6) = 1*2*3*4*5*6 = 720;
a(7) = 1*2*3*4*5*6*7 = 5040;
a(8) = 1*2*3*4*5*6*7*8 = 40320;
a(9) = 1*2*3*4*5*6*7*8*9 = 362880;
a(10) = 1*2*3*4*5*6*7*8*9 + 10 = 362890;
a(11) = 1*2*3*4*5*6*7*8*9 + 10*11 = 362990;
a(12) = 1*2*3*4*5*6*7*8*9 + 10*11*12 = 364200;
a(13) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13 = 380040;
a(14) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13*14 = 603120;
a(15) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13*14*15 = 3966480;
a(16) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13*14*15*16 = 58020480;
a(17) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13*14*15*16*17 = 980542080;
a(18) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13*14*15*16*17*18 = 17643588480;
a(19) = 1*2*3*4*5*6*7*8*9 + 10*11*12*13*14*15*16*17*18 + 19 = 17643588499; etc.
		

Crossrefs

Cf. A093361, (k=1) A000217, (k=2) A228958, (k=3) A319014, (k=4) A319205, (k=5) A319206, (k=6) A319207, (k=7) A319208, (k=8) A319209, (k=9) this sequence, (k=10) A319212.

Programs

  • Mathematica
    a[n_]:=Sum[(9*i)!/(9*i-9)!, {i, 1, Floor[n/9] }] + Sum[(1-Sign[Mod[n-j, 9]])*Product[n-i+1, {i, 1, j}], {j, 1, 8}] ; Array[a, 27] (* Stefano Spezia, Apr 18 2023 *)
    Table[Total[Times@@@Partition[Range[n],UpTo[9]]],{n,30}] (* Harvey P. Dale, Dec 04 2024 *)

Formula

a(n) = Sum_{i=1..floor(n/9)} (9*i)!/(9*i-9)! + Sum_{j=1..8} (1-sign((n-j) mod 9)) * (Product_{i=1..j} n-i+1).

A319212 a(n) = 1*2*3*4*5*6*7*8*9*10 + 11*12*13*14*15*16*17*18*19*20 + 21*22*23*24*25*26*27*28*29*30 + ... + (up to n).

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 3628811, 3628932, 3630516, 3652824, 3989160, 9394560, 101646720, 1767951360, 33525757440, 670446201600, 670446201621, 670446202062, 670446212226, 670446456624, 670452577200, 670611967200, 674921872800
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 13 2018

Keywords

Comments

In general, for sequences that multiply the first k natural numbers, and then add the product of the next k natural numbers (preserving the order of operations up to n), we have a(n) = Sum_{i=1..floor(n/k)} (k*i)!/(k*i-k)! + Sum_{j=1..k-1} (1-sign((n-j) mod k)) * (Product_{i=1..j} n-i+1). Here, k=10.

Examples

			a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2*3 = 6;
a(4) = 1*2*3*4 = 24;
a(5) = 1*2*3*4*5 = 120;
a(6) = 1*2*3*4*5*6 = 720;
a(7) = 1*2*3*4*5*6*7 = 5040;
a(8) = 1*2*3*4*5*6*7*8 = 40320;
a(9) = 1*2*3*4*5*6*7*8*9 = 362880;
a(10) = 1*2*3*4*5*6*7*8*9*10 = 3628800;
a(11) = 1*2*3*4*5*6*7*8*9*10 + 11 = 3628811;
a(12) = 1*2*3*4*5*6*7*8*9*10 + 11*12 = 3628932;
a(13) = 1*2*3*4*5*6*7*8*9*10 + 11*12*13 = 3630516;
a(14) = 1*2*3*4*5*6*7*8*9*10 + 11*12*13*14 = 3652824;
a(15) = 1*2*3*4*5*6*7*8*9*10 + 11*12*13*14*15 = 3989160;
a(16) = 1*2*3*4*5*6*7*8*9*10 + 11*12*13*14*15*16 = 9394560;
a(17) = 1*2*3*4*5*6*7*8*9*10 + 11*12*13*14*15*16*17 = 101646720;
a(18) = 1*2*3*4*5*6*7*8*9*10 + 11*12*13*14*15*16*17*18 = 1767951360;
a(19) = 1*2*3*4*5*6*7*8*9*10 + 11*12*13*14*15*16*17*18*19 = 33525757440;
a(20) = 1*2*3*4*5*6*7*8*9*10 + 11*12*13*14*15*16*17*18*19*20 = 670446201600;
etc.
		

Crossrefs

Cf. A093361, (k=1) A000217, (k=2) A228958, (k=3) A319014, (k=4) A319205, (k=5) A319206, (k=6) A319207, (k=7) A319208, (k=8) A319209, (k=9) A319211, (k=10) this sequence.

Programs

  • Mathematica
    a[n_]:=Sum[(10*i)!/(10*i-10)!, {i, 1, Floor[n/10] }] + Sum[(1-Sign[Mod[n-j,10]])*Product[n-i+1, {i, 1, j}], {j, 1, 9}] ; Array[a, 40] (* or *)
    CoefficientList[Series[x (1 + x + 4 x^2 + 18 x^3 + 96 x^4 + 600 x^5 + 4320 x^6 + 35280 x^7 + 322560 x^8 + 3265920 x^9 + 110 x^11 + 1540 x^12 + 22110 x^13 + 335280 x^14 + 5398800 x^15 + 92204640 x^16 + 1665916560 x^17 + 31754257920 x^18 + 636884519040 x^19 - 45 x^20 - 835 x^21 - 7040 x^22 + 2426160 x^24 + 99963600 x^25 + 3295369440 x^26 + 102515711760 x^27 + 3159608094720 x^28 + 98387160157440 x^29 + 240 x^30 + 2600 x^31 + 6400 x^32 - 384120 x^33 - 11000880 x^34 - 92637600 x^35 + 8150963040 x^36 + 682266206160 x^37 + 38076411985920 x^38 + 1874796686864640 x^39 - 630 x^40 - 4270 x^41 + 22120 x^42 + 1067820 x^43 + 8250000 x^44 - 525742800 x^45 - 23300782560 x^46 + 150285587760 x^47 + 93849442283520 x^48 + 9232053795296640 x^49 + 1008 x^50 + 3668 x^51 - 67928 x^52 - 1130796 x^53 + 15384048 x^54 + 861484800 x^55 - 7313090400 x^56 - 1717130091600 x^57 + 1723567507200 x^58 + 14964584346835200 x^59 - 1050 x^60 - 910 x^61 + 81760 x^62 + 291240 x^63 - 27736080 x^64 - 136792800 x^65 + 29138931360 x^66 - 117003292560 x^67 - 93887882161920 x^68 + 8480246509848960 x^69 + 720 x^70 - 1240 x^71 - 49760 x^72 + 371400 x^73 + 13094640 x^74 - 362037600 x^75 - 4579273440 x^76 + 749464032240 x^77 - 39511261278720 x^78 + 1564662885730560 x^79 - 315 x^80 + 1325 x^81 + 13300 x^82 - 301230 x^83 + 553680 x^84 + 130188600 x^85 - 5213255040 x^86 + 144639915840 x^87 - 3405078673920 x^88 + 72262987695360 x^89 + 80 x^90 - 530 x^91 + 180 x^92 + 60030 x^93 - 1288800 x^94 + 20098800 x^95 - 270829440 x^96 + 3295434240 x^97 - 36561611520 x^98 + 368739423360 x^99 - 9 x^100 + 81 x^101 - 576 x^102 + 3528 x^103 - 18144 x^104 + 75600 x^105 - 241920 x^106 + 544320 x^107 - 725760 x^108 + 362880 x^109)/((1 - x)^12 (1 + x)^11 (1 + x^2 + x^4 + x^6 + x^8)^11), {x, 0, 40}], x] (* Stefano Spezia, Sep 17 2018 *)

Formula

a(n) = Sum_{i=1..floor(n/10)} (10*i)!/(10*i-10)! + Sum_{j=1..9} (1-sign((n-j) mod 10)) * (Product_{i=1..j} n-i+1).
From Stefano Spezia, Sep 17 2018: (Start)
G.f.: x*(1 + x + 4*x^2 + 18*x^3 + 96*x^4 + 600*x^5 + 4320*x^6 + 35280*x^7 + 322560*x^8 + 3265920*x^9 + 110*x^11 + 1540*x^12 + 22110*x^13 + 335280*x^14 + 5398800*x^15 + 92204640*x^16 + 1665916560*x^17 + 31754257920*x^18 + 636884519040*x^19 - 45*x^20 - 835*x^21 - 7040*x^22 + 2426160*x^24 + 99963600*x^25 + 3295369440*x^26 + 102515711760*x^27 + 3159608094720*x^28 + 98387160157440*x^29 + 240*x^30 + 2600*x^31 + 6400*x^32 - 384120*x^33 - 11000880*x^34 - 92637600*x^35 + 8150963040*x^36 + 682266206160*x^37 + 38076411985920*x^38 + 1874796686864640*x^39 - 630*x^40 - 4270*x^41 + 22120*x^42 + 1067820*x^43 + 8250000*x^44 - 525742800*x^45 - 23300782560*x^46 + 150285587760*x^47 + 93849442283520*x^48 + 9232053795296640*x^49 + 1008*x^50 + 3668*x^51 - 67928*x^52 - 1130796*x^53 + 15384048*x^54 + 861484800*x^55 - 7313090400*x^56 - 1717130091600*x^57 + 1723567507200*x^58 + 14964584346835200*x^59 - 1050*x^60 - 910*x^61 + 81760*x^62 + 291240*x^63 - 27736080*x^64 - 136792800*x^65 + 29138931360*x^66 - 117003292560*x^67 - 93887882161920*x^68 + 8480246509848960*x^69 + 720*x^70 - 1240*x^71 - 49760*x^72 + 371400*x^73 + 13094640*x^74 - 362037600*x^75 - 4579273440*x^76 + 749464032240*x^77 - 39511261278720*x^78 + 1564662885730560*x^79 - 315*x^80 + 1325*x^81 + 13300*x^82 - 301230*x^83 + 553680*x^84 + 130188600*x^85 - 5213255040*x^86 + 144639915840*x^87 - 3405078673920*x^88 + 72262987695360*x^89 + 80*x^90 - 530*x^91 + 180*x^92 + 60030*x^93 - 1288800*x^94 + 20098800*x^95 - 270829440*x^96 + 3295434240*x^97 - 36561611520*x^98 + 368739423360*x^99 - 9*x^100 + 81*x^101 - 576*x^102 + 3528*x^103 - 18144*x^104 + 75600*x^105 - 241920*x^106 + 544320*x^107 - 725760*x^108 + 362880*x^109)/((1 - x)^12*(1 + x)^11*(1 + x^2 + x^4 + x^6 + x^8)^11).
(End)

A319373 a(n) = 1*2 - 3*4 + 5*6 - 7*8 + 9*10 - 11*12 + 13*14 - ... + (up to n).

Original entry on oeis.org

1, 2, -1, -10, -5, 20, 13, -36, -27, 54, 43, -78, -65, 104, 89, -136, -119, 170, 151, -210, -189, 252, 229, -300, -275, 350, 323, -406, -377, 464, 433, -528, -495, 594, 559, -666, -629, 740, 701, -820, -779, 902, 859, -990, -945, 1080, 1033, -1176, -1127
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 17 2018

Keywords

Comments

In general, for alternating sequences that multiply the first k natural numbers, and subtract/add the products of the next k natural numbers (preserving the order of operations up to n), we have a(n) = (-1)^floor(n/k) * Sum_{i=1..k-1} (1-sign((n-i) mod k)) * (Product_{j=1..i} (n-j+1)) + Sum_{i=1..n} (-1)^(floor(i/k)+1) * (1-sign(i mod k)) * (Product_{j=1..k} (i-j+1)). Here k=2.
An alternating version of A228958.

Examples

			a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2 - 3 = -1;
a(4) = 1*2 - 3*4 = -10;
a(5) = 1*2 - 3*4 + 5 = -5;
a(6) = 1*2 - 3*4 + 5*6 = 20;
a(7) = 1*2 - 3*4 + 5*6 - 7 = 13;
a(8) = 1*2 - 3*4 + 5*6 - 7*8 = -36;
a(9) = 1*2 - 3*4 + 5*6 - 7*8 + 9 = -27;
a(10) = 1*2 - 3*4 + 5*6 - 7*8 + 9*10 = 54;
a(11) = 1*2 - 3*4 + 5*6 - 7*8 + 9*10 - 11 = 43;
a(12) = 1*2 - 3*4 + 5*6 - 7*8 + 9*10 - 11*12 = -78;
a(13) = 1*2 - 3*4 + 5*6 - 7*8 + 9*10 - 11*12 + 13 = -65;
a(14) = 1*2 - 3*4 + 5*6 - 7*8 + 9*10 - 11*12 + 13*14 = 104;
a(15) = 1*2 - 3*4 + 5*6 - 7*8 + 9*10 - 11*12 + 13*14 - 15 = 89; etc.
		

Crossrefs

For similar sequences, see: A001057 (k=1), this sequence (k=2), A319543 (k=3), A319544 (k=4), A319545 (k=5), A319546 (k=6), A319547 (k=7), A319549 (k=8), A319550 (k=9), A319551 (k=10).

Programs

  • Mathematica
    Table[(Cos[n Pi/2] (1 - n - n^2) + Sin[n Pi/2] (1 + 3 n - n^2) - 1)/2, {n, 50}]
    a[n_] := (-1)^Floor[n/2] Sum[(1 - Sign[Mod[n - i, 2]]) Product[n - j + 1, {j, 1, i}], {i, 1, 1}] + Sum[(-1)^(Floor[i/2] + 1) (1 - Sign[Mod[i, 2]]) Product[i - j + 1, {j, 1, 2}], {i, 1, n}]; Array[a, 30] (* Stefano Spezia, Sep 23 2018 *)
  • PARI
    Vec(x*(1 + x - 6*x^3 - x^4 + x^5) / ((1 - x)*(1 + x^2)^3) + O(x^50)) \\ Colin Barker, Sep 18 2018

Formula

a(n) = (cos(n*Pi/2)*(1-n-n^2) + sin(n*Pi/2)*(1+3*n-n^2) - 1)/2.
From Colin Barker, Sep 18 2018: (Start)
G.f.: x*(1 + x - 6*x^3 - x^4 + x^5) / ((1 - x)*(1 + x^2)^3).
a(n) = a(n-1) - 3*a(n-2) + 3*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6) + a(n-7) for n>7. (End)
a(n) = (-1 + (-1)^((n-1)*n/2))/2 + (-2 + (-1)^n)*(-1)^(n*(n+1)/2)*n/2 - (-1)^((n-1)*n/2)*n^2/2. - Bruno Berselli, Sep 25 2018

A227364 a(n) = 1 + 2*3 + 4*5*6 + 7*8*9*10 + ... + ...*n (see Example lines).

Original entry on oeis.org

0, 1, 3, 7, 11, 27, 127, 134, 183, 631, 5167, 5178, 5299, 6883, 29191, 365527, 365543, 365799, 370423, 458551, 2226007, 39435607, 39435629, 39436113, 39447751, 39739207, 47329207, 252562807, 6006997207, 6006997236, 6006998077, 6007024177, 6007860247, 6035477527, 6975328087
Offset: 0

Views

Author

Alex Ratushnyak, Jul 07 2013

Keywords

Examples

			a(5) = 1 + 2*3 + 4*5 = 27;
a(6) = 1 + 2*3 + 4*5*6 = 127;
a(7) = 1 + 2*3 + 4*5*6 + 7 = 134.
		

Crossrefs

Programs

  • Python
    for n in range(55):
      sum = 0
      i = k = 1
      while i<=n:
        product = 1
        for x in range(k):
          product *= i
          i += 1
          if i>n: break
        sum += product
        k += 1
      print(str(sum), end=',')
Showing 1-10 of 16 results. Next