A319068 a(n) is the greatest k such that A000203(k) divides n where A000203 is the sum of divisors of n.
1, 1, 2, 3, 1, 5, 4, 7, 2, 1, 1, 11, 9, 13, 8, 7, 1, 17, 1, 19, 4, 1, 1, 23, 1, 9, 2, 13, 1, 29, 25, 31, 2, 1, 4, 22, 1, 37, 18, 27, 1, 41, 1, 43, 8, 1, 1, 47, 4, 1, 2, 9, 1, 53, 1, 39, 49, 1, 1, 59, 1, 61, 32, 31, 9, 5, 1, 67, 2, 13, 1, 71, 1, 73, 8, 37, 4, 45, 1, 79
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
- József Sándor, The sum-of-divisors minimum and maximum functions, Research Report Collection, Volume 8, Issue 1, 2005. See pp. 3-4.
Crossrefs
Programs
-
Mathematica
A319068[n_] := Module[{k = n}, While[!Divisible[n, DivisorSigma[1, k]], k--]; k]; Array[A319068, 100] (* Paolo Xausa, Dec 11 2024 *)
-
PARI
a(n) = {forstep (k=n, 1, -1, if ((n % sigma(k)) == 0, return (k)););}
-
PARI
a(n) = {my(d = divisors(n)); vecmax(vector(#d, i, invsigmaMax(d[i])));} \\ Amiram Eldar, Nov 29 2024, using Max Alekseyev's invphi.gp
Formula
a(p+1) = p, for p prime. See Sándor Theorem 2 p. 4.
Comments