A319085 a(n) = Sum_{k=1..n} k^2*tau(k), where tau is A000005.
1, 9, 27, 75, 125, 269, 367, 623, 866, 1266, 1508, 2372, 2710, 3494, 4394, 5674, 6252, 8196, 8918, 11318, 13082, 15018, 16076, 20684, 22559, 25263, 28179, 32883, 34565, 41765, 43687, 49831, 54187, 58811, 63711, 75375, 78113, 83889, 89973, 102773, 106135
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Accumulate[Table[k^2*DivisorSigma[0, k], {k, 1, 50}]]
-
PARI
a(n) = sum(k=1, n, k^2*numdiv(k)); \\ Michel Marcus, Sep 12 2018
-
PARI
f(n) = n*(n+1)*(2*n+1)/6; \\ A000330 a(n) = 2*sum(k=1, sqrtint(n), k^2 * f(n\k)) - f(sqrtint(n))^2; \\ Daniel Suteu, Nov 26 2020
-
Python
from math import isqrt def A319085(n): return (-((s:=isqrt(n))*(s+1)*(2*s+1))**2//12 + sum(k**2*(q:=n//k)*(q+1)*(2*q+1) for k in range(1,s+1)))//3 # Chai Wah Wu, Oct 21 2023
Formula
a(n) ~ n^3 * (log(n) + 2*gamma - 1/3)/3, where gamma is the Euler-Mascheroni constant A001620.
a(n) = Sum_{k=1..n} k^2 * Bernoulli(3, floor(1 + n/k)) / 3, where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 08 2018
a(n) = Sum_{k=1..n} Sum_{i=1..floor(n/k)} i^2 * k^2. - Wesley Ivan Hurt, Nov 26 2020
Comments