cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A034714 Dirichlet convolution of squares with themselves.

Original entry on oeis.org

1, 8, 18, 48, 50, 144, 98, 256, 243, 400, 242, 864, 338, 784, 900, 1280, 578, 1944, 722, 2400, 1764, 1936, 1058, 4608, 1875, 2704, 2916, 4704, 1682, 7200, 1922, 6144, 4356, 4624, 4900, 11664, 2738, 5776, 6084, 12800, 3362, 14112, 3698, 11616, 12150, 8464
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A000005, A000290, A001620, A038040, A134576, A319085 (partial sums).

Programs

Formula

Dirichlet g.f.: zeta^2(s-2).
Equals n^2*tau(n), where tau(n) = A000005(n) = number of divisors of n. - Jon Perry, Aug 28 2005
Multiplicative with a(p^e) = (e+1)p^(2e). - Mitch Harris, Jun 27 2005
Row sums of triangle A134576. - Gary W. Adamson, Nov 02 2007
G.f.: Sum_{k>=1} k^2*x^k*(1 + x^k)/(1 - x^k)^3. - Ilya Gutkovskiy, Oct 24 2018
a(n) = n * A038040(n). - Torlach Rush, Feb 01 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (-p^2 * log(1 - 1/p^2)) = 1.27728092754165872535305748273941301416624226497497308879403022758421224... - Vaclav Kotesovec, Sep 19 2020
G.f.: Sum_{n >= 1} q^(n^2)*( n^4*q^(3*n) - n^2*(n^2 + 4*n - 2)*q^(2*n) - n^2*(n^2 - 4*n - 2)*q^n + n^4 )/(1 - q^n)^3 - apply the operator q*d/dq twice to equation 5 in Arndt and set x = 1. - Peter Bala, Jan 21 2021
Sum_{k=1..n} a(k) ~ (n^3/3) * (log(n) + 2*gamma - 1/3), where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 02 2023
a(n) = Sum_{1 <= i, j <= n} sigma_2( gcd(i, j, n) ) = Sum_{d divides n} sigma_2(d) * J_2(n/d), where sigma_2(n) = A001157(n) and the Jordan totient function J_2(n) = A007434(n). - Peter Bala, Jan 22 2024

A320895 a(n) = Sum_{k=1..n} k^3 * tau(k), where tau is A000005.

Original entry on oeis.org

1, 17, 71, 263, 513, 1377, 2063, 4111, 6298, 10298, 12960, 23328, 27722, 38698, 52198, 72678, 82504, 117496, 131214, 179214, 216258, 258850, 283184, 393776, 440651, 510955, 589687, 721399, 770177, 986177, 1045759, 1242367, 1386115, 1543331, 1714831, 2134735
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 23 2018

Keywords

Comments

In general, for m>=0, Sum_{k=1..n} k^m * tau(k) ~ n^(m+1) * ((log(n) + 2*gamma)/(m+1) - 1/(m+1)^2), where gamma is the Euler-Mascheroni constant A001620.

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[k^3*DivisorSigma[0, k], {k, 1, 50}]]
  • PARI
    a(n) = sum(k=1, n, k^3*numdiv(k)); \\ Michel Marcus, Oct 23 2018

Formula

a(n) ~ n^4 * (log(n) + 2*gamma - 1/4)/4, where gamma is the Euler-Mascheroni constant A001620.
a(n) = Sum_{k=1..n} (k^3 / 4) * floor(n/k)^2 * floor(1 + n/k)^2. - Daniel Suteu, Nov 07 2018

A318755 a(n) = Sum_{k=1..n} tau(k)^3, where tau is A000005.

Original entry on oeis.org

1, 9, 17, 44, 52, 116, 124, 188, 215, 279, 287, 503, 511, 575, 639, 764, 772, 988, 996, 1212, 1276, 1340, 1348, 1860, 1887, 1951, 2015, 2231, 2239, 2751, 2759, 2975, 3039, 3103, 3167, 3896, 3904, 3968, 4032, 4544, 4552, 5064, 5072, 5288, 5504, 5568, 5576
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[DivisorSigma[0, Range[50]]^3]
  • PARI
    a(n) = sum(k=1, n, numdiv(k)^3); \\ Michel Marcus, Sep 03 2018

Formula

a(n) ~ n * (A1*log(n)^7 + A2*log(n)^6 + A3*log(n)^5 + A4*log(n)^4 + A5*log(n)^3 + A6*log(n)^2 + A7*log(n) + A8) [Ramanujan, 1916, formula (8)].
From Vaclav Kotesovec, Mar 12 2023: (Start)
Let f(s) = Product_{p prime} (1 - 9/p^(2*s) + 16/p^(3*s) - 9/p^(4*s) + 1/p^(6*s)), then
A1 = f(1)/5040 = 0.0000097860463451190658257888710490039661018239924009134296302566263529129...
A2 = ((8*gamma - 1)*f(1) + f'(1)) / 720 = 0.0007019997226174095261771358653540021199703406583347258622085873074052900...
A3 = (2 * f(1) * (1 - 8*gamma + 28*gamma^2 - 8*sg1) + 2*(8*gamma - 1)*f'(1) + f''(1)) / 240 = 0.0171707557268638504150726777646428533953516776541779590118582753709080243...
A4 = (6*f(1)*(-1 - 28*gamma^2 + 56*gamma^3 + gamma*(8 - 56*sg1) + 8*sg1 + 4*sg2) + 6*(1 - 8*gamma + 28*gamma^2 - 8*sg1)*f'(1) + (24*gamma - 3)*f''(1) + f'''(1)) / 144 = 0.1758477246705824231478998937203303065702508974398264386862202155788...,
where f(1) = Product_{p prime} (1 - 9/p^2 + 16/p^3 - 9/p^4 + 1/p^6) = 0.0493216735794000917619759100869799891531929217006036853364933968186814900...,
f'(1) = f(1) * Sum_{p prime} 6*(3*p + 1) * log(p) / ((p-1) * (p^2 + 4*p + 1)) = 0.3270075329904166293296173488834535949530448497141635531152019426434776932...,
f''(1) = f'(1)^2 / f(1) + f(1) * Sum_{p prime} -36 * p^2 * (p+1)^2 * log(p)^2 / ((p-1)^2 * (p^2 + 4*p + 1)^2) = 1.1340946589859924227356699847227569935993284591079455746283572890834872890...,
f'''(1) = 3*f'(1)*f''(1)/f(1) - 2*f'(1)^3/f(1)^2 + f(1) * Sum_{p prime} 72*p^2 * (p^5 + 3*p^4 + 8*p^3 + 8*p^2 + 3*p+ 1) * log(p)^3 / ((p-1)^3 * (p^2+ 4*p + 1)^3) = -1.3447542210274297874241826540796632006263184659735145444999327537246287...,
gamma is the Euler-Mascheroni constant A001620 and sg1, sg2 are the Stieltjes constants, see A082633 and A086279.
Approximate values of other constants:
A5 = 0.7626157870664479996781152281270580148665443022014605423466363134512...
A6 = 1.3720912878905940866975369743071441424192833481004753922122458993040...
A7 = 1.1416118168318711437057727816148048057614284471759625288073915723140...
A8 = 0.2618221765943171424958051160111945242076019991649774700610674747694...
(End)

A106846 a(n) = Sum_{k + l*m <= n} (k + l*m), with 0 <= k,l,m <= n.

Original entry on oeis.org

0, 4, 22, 64, 144, 269, 461, 720, 1072, 1522, 2092, 2774, 3626, 4614, 5776, 7126, 8694, 10445, 12461, 14684, 17204, 19997, 23077, 26412, 30156, 34206, 38600, 43352, 48532, 54042, 60072, 66458, 73338, 80664, 88450, 96710, 105638, 114999
Offset: 0

Views

Author

Ralf Stephan, May 06 2005

Keywords

Crossrefs

Programs

  • Maple
    A106846 := proc(n)
        local a,k,l,m ;
        a := 0 ;
        for k from 0 to n do
            for l from 0 to n do
                if l = 0 then
                    m := n ;
                else
                    m := floor((n-k)/l) ;
                end if;
                if m >=0 then
                    m := min(m,n) ;
                    a := a+(m+1)*k+l*m*(m+1)/2 ;
                end if;
            end do:
        end do:
        a ;
    end proc: # R. J. Mathar, Oct 17 2012
  • Mathematica
    A106846[n_] := Module[{a, k, l, m }, a = 0; For[k = 0, k <= n, k++, For[l = 0, l <= n, l++, If[l == 0, m = n, m = Floor[(n - k)/l]]; If[m >= 0, m = Min[m, n]; a = a + (m + 1)*k + l*m*(m + 1)/2 ]]]; a];
    Table[A106846[n], {n, 0, 40}] (* Jean-François Alcover, Apr 04 2024, after R. J. Mathar *)

Formula

From Ridouane Oudra, Jun 24 2024: (Start)
a(n) = (1/2) * (n*(n+1)*(2*n+1) + Sum_{k=1..n} (n^2 + n + k - k^2) * tau(k)).
a(n) = (1/2) * (A055112(n) + (n^2 + n) * A006218(n) + A143127(n) - A319085(n)).
a(n) = A059270(n) + A143127(n) + A106847(n). (End)

A106847 a(n) = Sum {k + j*m <= n} (k + j*m), with 0 < k,j,m <= n.

Original entry on oeis.org

0, 0, 2, 11, 31, 71, 131, 229, 357, 537, 767, 1064, 1412, 1867, 2385, 3000, 3720, 4570, 5506, 6608, 7808, 9194, 10734, 12436, 14260, 16360, 18622, 21079, 23739, 26668, 29758, 33199, 36815, 40742, 44924, 49369, 54085, 59265, 64661, 70355
Offset: 0

Views

Author

Ralf Stephan, May 06 2005

Keywords

Examples

			We have 1+1*1=2<=3, 1+2*1=3, 1+1*2=3, 2+1*1=3, thus a(3)=2+3+3+3=11.
		

Crossrefs

Cf. A106633, A106634, A106846, A078567 (number of terms).

Programs

  • Maple
    A106847 := proc(n)
        local a,k,l,m ;
        a := 0 ;
        for k from 1 to n do
            for l from 1 to n-k do
                m := floor((n-k)/l) ;
                if m >=1 then
                    m := min(m,n) ;
                    a := a+m*k+l*m*(m+1)/2 ;
                end if;
            end do:
        end do:
        a ;
    end proc: # R. J. Mathar, Oct 17 2012
  • Mathematica
    A106847[n_] := Module[{a, k, l, m}, a = 0; For[k = 1, k <= n, k++, For[l = 1, l <= n - k, l++, If[l == 0, m = n, m = Floor[(n - k)/l]]; If[m >= 1, m = Min[m, n]; a = a + m*k + l*m*(m + 1)/2]]]; a];
    Table[A106847[n], {n, 0, 40}] (* Jean-François Alcover, Apr 04 2024, after R. J. Mathar *)
  • PARI
    A106847(n)=sum(m=1,n-1,sum(k=1,(n-1)\m,(n-m*k)*(n+m*k+1)))/2  \\ M. F. Hasler, Oct 17 2012

Formula

From Ridouane Oudra, Jun 02 2024: (Start)
a(n) = (1/2)*Sum_{k=1..n} (n^2 + n - k^2 - k)*tau(k);
a(n) = (1/2)*(n^2 + n)*A006218(n) - Sum_{k=1..n} A143272(k);
a(n) = (1/2)*((n + 1)*A143274(n) - A143127(n) - A319085(n)). (End)
a(n) ~ n^3 * (log(n) + 2*gamma - 4/3)/3, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jun 15 2024

A320896 a(n) = Sum_{k=1..n} k * tau(k)^2, where tau is A000005.

Original entry on oeis.org

1, 9, 21, 57, 77, 173, 201, 329, 410, 570, 614, 1046, 1098, 1322, 1562, 1962, 2030, 2678, 2754, 3474, 3810, 4162, 4254, 5790, 6015, 6431, 6863, 7871, 7987, 9907, 10031, 11183, 11711, 12255, 12815, 15731, 15879, 16487, 17111, 19671, 19835, 22523, 22695, 24279
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[k*DivisorSigma[0, k]^2, {k, 1, 50}]]
  • PARI
    a(n) = sum(k=1, n, k*numdiv(k)^2); \\ Michel Marcus, Oct 23 2018

Formula

a(n) ~ n^2 * (3*(Pi^6*(-1 - 24*g^2 + 32*g^3 + g*(8 - 96*s1) + 16*s1 + 16*s2) - 13824*z1^3 + 576*Pi^2*z1*((-1 + 8*g)*z1 + 4*z2) - 8*Pi^4*(3*(1 - 8*g + 24*g^2 - 16*s1)*z1 - 6*z2 + 48*g*z2 + 8*z3)) + 6*(Pi^6*(1 - 8*g + 24*g^2 - 16*s1) + 576*Pi^2*z1^2 - 24*Pi^4*(-z1 + 8*g*z1 + 2*z2))*log(n) + 6*((-1 + 8*g)*Pi^6 - 24*Pi^4*z1)*log(n)^2 + 4*Pi^6*log(n)^3) / (8*Pi^8), where g is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and s1, s2 are the Stieltjes constants, see A082633 and A086279.

A320897 a(n) = Sum_{k=1..n} k^2 * tau(k)^2, where tau is A000005.

Original entry on oeis.org

1, 17, 53, 197, 297, 873, 1069, 2093, 2822, 4422, 4906, 10090, 10766, 13902, 17502, 23902, 25058, 36722, 38166, 52566, 59622, 67366, 69482, 106346, 111971, 122787, 134451, 162675, 166039, 223639, 227483, 264347, 281771, 300267, 319867, 424843, 430319, 453423
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 23 2018

Keywords

Comments

In general, for m>=0, Sum_{k=1..n} k^m * tau(k)^2 ~ n^(m+1) * (log(n))^3 / ((m+1) * Pi^2).

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[k^2*DivisorSigma[0, k]^2, {k, 1, 50}]]
  • PARI
    a(n) = sum(k=1, n, k^2*numdiv(k)^2); \\ Michel Marcus, Oct 23 2018

Formula

a(n) ~ n^3 * (2*Pi^6*(-1 + 12*g - 54*g^2 + 108*g^3 + 36*s1 - 324*g*s1 + 54*s2) - 93312*z1^3 + 2592*Pi^2*z1*(-z1 + 12*g*z1 + 6*z2) - 72*Pi^4*(z1 - 12*g*z1 + 54*g^2*z1 - 36*s1*z1 - 3*z2 + 36*g*z2 + 6*z3) + 6*(Pi^6*(1 - 12*g + 54*g^2 - 36*s1) + 1296*Pi^2*z1^2 - 36*Pi^4*(-z1 + 12*g*z1 + 3*z2))*log(n) + 9*((-1 + 12*g)*Pi^6 - 36*Pi^4*z1)*log(n)^2 + 9*Pi^6*log(n)^3) / (27*Pi^8), where g is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and s1, s2 are the Stieltjes constants, see A082633 and A086279.

A350124 a(n) = Sum_{k=1..n} k^2 * floor(n/k)^3.

Original entry on oeis.org

1, 12, 40, 121, 207, 473, 649, 1142, 1611, 2401, 2853, 4647, 5285, 6879, 8759, 11452, 12558, 16739, 18127, 23353, 27129, 31171, 33219, 43573, 47524, 53210, 59538, 69996, 73274, 89694, 93446, 107195, 116731, 126545, 137505, 164580, 169946, 182244, 195644, 225454
Offset: 1

Views

Author

Seiichi Manyama, Dec 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[DivisorSigma[2, k] - 3*k*DivisorSigma[1, k] + 3*k^2*DivisorSigma[0, k], {k, 1, 50}]] (* Vaclav Kotesovec, Dec 17 2021 *)
  • PARI
    a(n) = sum(k=1, n, k^2*(n\k)^3);
    
  • PARI
    a(n) = sum(k=1, n, k^2*sumdiv(k, d, (d^3-(d-1)^3)/d^2));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (k^3-(k-1)^3)*x^k*(1+x^k)/(1-x^k)^3)/(1-x))
    
  • Python
    from math import isqrt
    def A350124(n): return (-(s:=isqrt(n))**4*(s+1)*(2*s+1) + sum((q:=n//k)*(k*(3*(k-1))+q*(k*(9*(k-1))+q*(k*(12*k-6)+2)+3)+1) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{k=1..n} k^2 * Sum_{d|k} (d^3 - (d - 1)^3)/d^2.
G.f.: (1/(1 - x)) * Sum_{k>=1} (k^3 - (k - 1)^3) * x^k * (1 + x^k)/(1 - x^k)^3.
From Vaclav Kotesovec, Aug 03 2022: (Start)
a(n) = A064602(n) - 3*A143128(n) + 3*A319085(n).
a(n) ~ n^3 * (log(n) + 2*gamma + (zeta(3) - 1)/3 - Pi^2/6), where gamma is the Euler-Mascheroni constant A001620. (End)
Showing 1-8 of 8 results.