A360429 Inverse Mobius transformation of A034714.
1, 9, 19, 57, 51, 171, 99, 313, 262, 459, 243, 1083, 339, 891, 969, 1593, 579, 2358, 723, 2907, 1881, 2187, 1059, 5947, 1926, 3051, 3178, 5643, 1683, 8721, 1923, 7737, 4617, 5211, 5049, 14934, 2739, 6507, 6441, 15963, 3363, 16929, 3699, 13851, 13362, 9531, 4419, 30267, 7302, 17334
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A360429 := proc(n) add(numtheory[tau](d)*d^2,d=numtheory[divisors](n)) ; end proc:
-
Mathematica
f[p_, e_] := ((e+1)*p^(2*e+4) - (e+2)*p^(2*e+2) + 1)/(p^2-1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 09 2023 *)
Formula
a(n) = Sum_{d|n} A000005(d)*d^2.
Dirichlet g.f.: zeta^2(s-2)*zeta(s).
From Amiram Eldar, Feb 09 2023: (Start)
Multiplicative with a(p^e) = ((e+1)*p^(2*e+4) - (e+2)*p^(2*e+2) + 1)/(p^2-1)^2.
Sum_{k=1..n} a(k) ~ (log(n) + 2*gamma - 1/3 + zeta'(3)/zeta(3)) * n^3 * zeta(3)/3, where gamma is Euler's constant (A001620). (End)
Comments