cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A360429 Inverse Mobius transformation of A034714.

Original entry on oeis.org

1, 9, 19, 57, 51, 171, 99, 313, 262, 459, 243, 1083, 339, 891, 969, 1593, 579, 2358, 723, 2907, 1881, 2187, 1059, 5947, 1926, 3051, 3178, 5643, 1683, 8721, 1923, 7737, 4617, 5211, 5049, 14934, 2739, 6507, 6441, 15963, 3363, 16929, 3699, 13851, 13362, 9531, 4419, 30267, 7302, 17334
Offset: 1

Views

Author

R. J. Mathar, Feb 07 2023

Keywords

Crossrefs

Programs

  • Maple
    A360429 := proc(n)
        add(numtheory[tau](d)*d^2,d=numtheory[divisors](n)) ;
    end proc:
  • Mathematica
    f[p_, e_] := ((e+1)*p^(2*e+4) - (e+2)*p^(2*e+2) + 1)/(p^2-1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 09 2023 *)

Formula

a(n) = Sum_{d|n} A000005(d)*d^2.
Dirichlet convolution of A034714 and A000012.
Dirichlet g.f.: zeta^2(s-2)*zeta(s).
From Amiram Eldar, Feb 09 2023: (Start)
Multiplicative with a(p^e) = ((e+1)*p^(2*e+4) - (e+2)*p^(2*e+2) + 1)/(p^2-1)^2.
Sum_{k=1..n} a(k) ~ (log(n) + 2*gamma - 1/3 + zeta'(3)/zeta(3)) * n^3 * zeta(3)/3, where gamma is Euler's constant (A001620). (End)

A319085 a(n) = Sum_{k=1..n} k^2*tau(k), where tau is A000005.

Original entry on oeis.org

1, 9, 27, 75, 125, 269, 367, 623, 866, 1266, 1508, 2372, 2710, 3494, 4394, 5674, 6252, 8196, 8918, 11318, 13082, 15018, 16076, 20684, 22559, 25263, 28179, 32883, 34565, 41765, 43687, 49831, 54187, 58811, 63711, 75375, 78113, 83889, 89973, 102773, 106135
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 10 2018

Keywords

Comments

In general, for m>=1, Sum_{k=1..n} k^m * tau(k) = Sum_{k=1..n} k^m * (Bernoulli(m+1, floor(1 + n/k)) - Bernoulli(m+1, 0)) / (m+1), where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 08 2018

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[k^2*DivisorSigma[0, k], {k, 1, 50}]]
  • PARI
    a(n) = sum(k=1, n, k^2*numdiv(k)); \\ Michel Marcus, Sep 12 2018
    
  • PARI
    f(n) = n*(n+1)*(2*n+1)/6; \\ A000330
    a(n) = 2*sum(k=1, sqrtint(n), k^2 * f(n\k)) - f(sqrtint(n))^2; \\ Daniel Suteu, Nov 26 2020
    
  • Python
    from math import isqrt
    def A319085(n): return (-((s:=isqrt(n))*(s+1)*(2*s+1))**2//12 + sum(k**2*(q:=n//k)*(q+1)*(2*q+1) for k in range(1,s+1)))//3 # Chai Wah Wu, Oct 21 2023

Formula

a(n) ~ n^3 * (log(n) + 2*gamma - 1/3)/3, where gamma is the Euler-Mascheroni constant A001620.
a(n) = Sum_{k=1..n} k^2 * Bernoulli(3, floor(1 + n/k)) / 3, where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 08 2018
a(n) = Sum_{k=1..n} Sum_{i=1..floor(n/k)} i^2 * k^2. - Wesley Ivan Hurt, Nov 26 2020

A360428 Inverse Mobius transformation of A338164.

Original entry on oeis.org

1, 7, 17, 40, 49, 119, 97, 208, 225, 343, 241, 680, 337, 679, 833, 1024, 577, 1575, 721, 1960, 1649, 1687, 1057, 3536, 1825, 2359, 2673, 3880, 1681, 5831, 1921, 4864, 4097, 4039, 4753, 9000, 2737, 5047, 5729, 10192, 3361, 11543, 3697, 9640, 11025, 7399, 4417, 17408, 7105, 12775
Offset: 1

Views

Author

R. J. Mathar, Feb 07 2023

Keywords

Crossrefs

Programs

  • Maple
    A360428 := proc(n)
        add(numtheory[mobius](n/d)*numtheory[tau](d)*d^2,d=numtheory[divisors](n)) ;
    end proc:
  • Mathematica
    f[p_, e_] := (e + 1 - e/p^2)*p^(2*e); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 09 2023 *)

Formula

a(n) = Sum_{d|n} A008683(n/d)*A000005(d)*d^2.
Dirichlet convolution of A034714 and A008683.
Dirichlet g.f.: zeta^2(s-2)/zeta(s).
From Amiram Eldar, Feb 09 2023: (Start)
Multiplicative with a(p^e) = (e + 1 - e/p^2)*p^(2*e).
Sum_{k=1..n} a(k) ~ (log(n) + 2*gamma - 1/3 - zeta'(3)/zeta(3)) * n^3 / (3*zeta(3)), where gamma is Euler's constant (A001620). (End)
From Peter Bala, Jan 16 2024: (Start)
a(n) = Sum_{1 <= i, j <= n} gcd(i, j, n)^2. Cf. A069097.
a(n) = Sum_{d divides n} d^2 * J_2(n/d), where J_2(n) = A007434(n). (End)

A309732 Expansion of Sum_{k>=1} k^2 * x^k/(1 - x^k)^3.

Original entry on oeis.org

1, 7, 15, 38, 40, 108, 77, 188, 180, 290, 187, 600, 260, 560, 630, 888, 442, 1323, 551, 1620, 1218, 1364, 805, 3024, 1325, 1898, 1998, 3136, 1276, 4680, 1457, 4080, 2970, 3230, 3290, 7470, 2072, 4028, 4134, 8200, 2542, 9072, 2795, 7656, 7830, 5888, 3337, 14496, 4998, 9825, 7038
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 14 2019

Keywords

Comments

Dirichlet convolution of triangular numbers (A000217) with squares (A000290).
a(n) is n times half m, where m is the sum of all parts plus the total number of parts of the partitions of n into equal parts. - Omar E. Pol, Nov 30 2019

Crossrefs

Programs

  • Magma
    [n*(n*NumberOfDivisors(n) + DivisorSigma(1,n))/2:n in [1..51]]; // Marius A. Burtea, Nov 29 2019
  • Maple
    with(numtheory): seq(n*(n*tau(n)+sigma(n))/2, n=1..50); # Ridouane Oudra, Nov 28 2019
  • Mathematica
    nmax = 51; CoefficientList[Series[Sum[k^2 x^k/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DirichletConvolve[j (j + 1)/2, j^2, j, n], {n, 1, 51}]
    Table[n (n DivisorSigma[0, n] + DivisorSigma[1, n])/2, {n, 1, 51}]
  • PARI
    a(n)=sumdiv(n, d, binomial(n/d+1,2)*d^2); \\ Andrew Howroyd, Aug 14 2019
    
  • PARI
    a(n)=n*(n*numdiv(n) + sigma(n))/2; \\ Andrew Howroyd, Aug 14 2019
    

Formula

G.f.: Sum_{k>=1} (k*(k + 1)/2) * x^k * (1 + x^k)/(1 - x^k)^3.
a(n) = n * (n * d(n) + sigma(n))/2.
Dirichlet g.f.: zeta(s-2) * (zeta(s-2) + zeta(s-1))/2.
a(n) = n*(A038040(n) + A000203(n))/2 = n*A152211(n)/2. - Omar E. Pol, Aug 17 2019
a(n) = Sum_{k=1..n} k*sigma(gcd(n,k)). - Ridouane Oudra, Nov 28 2019

A338164 Dirichlet g.f.: (zeta(s-2) / zeta(s))^2.

Original entry on oeis.org

1, 6, 16, 33, 48, 96, 96, 168, 208, 288, 240, 528, 336, 576, 768, 816, 576, 1248, 720, 1584, 1536, 1440, 1056, 2688, 1776, 2016, 2448, 3168, 1680, 4608, 1920, 3840, 3840, 3456, 4608, 6864, 2736, 4320, 5376, 8064, 3360, 9216, 3696, 7920, 9984, 6336, 4416, 13056, 7008, 10656
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 14 2020

Keywords

Comments

Dirichlet convolution of Jordan function J_2 (A007434) with itself.

Crossrefs

Programs

  • Mathematica
    Jordan2[n_] := Sum[d^2 MoebiusMu[n/d], {d, Divisors[n]}]; a[n_] := Sum[Jordan2[d] Jordan2[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 50}]
    a[1] = 1; f[p_, e_] := p^(2 e - 4) (p^4 + e (p^2 - 1)^2 - 1); a[n_] := Times @@ f @@@ FactorInteger[n]; Table[a[n], {n, 1, 50}]

Formula

Multiplicative with a(p^e) = p^(2*e - 4) * (p^4 + e * (p^2 - 1)^2 - 1).
a(n) = Sum_{d|n} J_2(d) * J_2(n/d).
a(n) = Sum_{d|n} d^2 * tau(d) * A007427(n/d), where tau = A000005.
a(n) = Sum_{d|n} d^2 * A321322(n/d).
(1/tau(n)) * Sum_{d|n} a(d) * tau(n/d) = n^2.
Sum_{k=1..n} a(k) ~ ((3*log(n) + 6*gamma - 1)/(9*zeta(3)^2) - 2*zeta'(3) / (3*zeta(3)^3)) * n^3, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 14 2020

A386012 a(n) = n^3*tau(n).

Original entry on oeis.org

1, 16, 54, 192, 250, 864, 686, 2048, 2187, 4000, 2662, 10368, 4394, 10976, 13500, 20480, 9826, 34992, 13718, 48000, 37044, 42592, 24334, 110592, 46875, 70304, 78732, 131712, 48778, 216000, 59582, 196608, 143748, 157216, 171500, 419904, 101306, 219488, 237276, 512000
Offset: 1

Views

Author

R. J. Mathar, Jul 14 2025

Keywords

Comments

Dirichlet convolution of the cubes A000578 with themselves.

Crossrefs

Cf. A000005, A001620, A034714, A038040, A320895 (partial sums), A372928 (Mobius transform).

Programs

  • Maple
    seq( n^3*numtheory[tau](n),n=1..100) ;
  • Mathematica
    a[n_]:=n^3*DivisorSigma[0,n]; Array[a,40] (* Stefano Spezia, Jul 14 2025 *)
    nmax = 40; Rest[CoefficientList[Series[Sum[k^3*x^k*(1 + 4*x^k + x^(2*k))/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 03 2025 *)
  • PARI
    a(n) = n^3 * numdiv(n); \\ Amiram Eldar, Jul 15 2025

Formula

a(n) = n*A034714(n) = n^2*A038040(n).
Dirichlet g.f.: zeta^2(s-3).
From Amiram Eldar, Jul 15 2025 (Start)
Multiplicative with a(p^e) = p^(3*e) * (e+1).
Sum_{k=1..n} a(k) ~ (n^4/4) * (log(n) + 2*gamma - 1/4), where gamma is Euler's constant (A001620). (End)
G.f.: Sum_{k>=1} k^3*x^k*(1 + 4*x^k + x^(2*k)) / (1-x^k)^4. - Vaclav Kotesovec, Aug 03 2025

A134576 A127733 * A051731.

Original entry on oeis.org

1, 4, 4, 9, 0, 9, 16, 16, 0, 16, 25, 0, 0, 0, 25, 36, 36, 36, 0, 0, 36, 49, 0, 0, 0, 0, 0, 49, 64, 64, 0, 64, 0, 0, 0, 64, 81, 0, 81, 0, 0, 0, 0, 0, 81, 100, 100, 0, 0, 100, 0, 0, 0, 0, 100
Offset: 1

Views

Author

Gary W. Adamson, Nov 02 2007

Keywords

Comments

Row sums = A034714: (1, 8, 18, 48, 50, 144, ...).

Examples

			First few rows of the triangle:
   1;
   4,  4;
   9,  0,  9;
  16, 16,  0, 16;
  25,  0,  0,  0, 25;
  36, 36, 36,  0,  0, 36;
  49,  0,  0,  0,  0,  0, 49;
  ...
		

Crossrefs

Formula

A127733 * A051731 as infinite lower triangular matrices.
Triangle read by rows: replace 1's in n-th row of A051731 with n^2.

A328490 Dirichlet g.f.: zeta(s)^2 * zeta(s-2)^2.

Original entry on oeis.org

1, 10, 20, 67, 52, 200, 100, 380, 282, 520, 244, 1340, 340, 1000, 1040, 1973, 580, 2820, 724, 3484, 2000, 2440, 1060, 7600, 1978, 3400, 3460, 6700, 1684, 10400, 1924, 9710, 4880, 5800, 5200, 18894, 2740, 7240, 6800, 19760, 3364, 20000, 3700, 16348, 14664
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 16 2019

Keywords

Comments

Dirichlet convolution of A001157 with itself.
Dirichlet convolution of A000005 with A034714.
Dirichlet convolution of A000290 with A007433.

Crossrefs

Programs

  • Magma
    [&+[DivisorSigma(2,d)*DivisorSigma(2, n div d):d in Divisors(n)]:n in [1..50]]; // Marius A. Burtea, Oct 16 2019
    
  • Mathematica
    Table[DivisorSum[n, DivisorSigma[2, #] DivisorSigma[2, n/#] &], {n, 1, 45}]
    f[p_, e_] :=((e*(p^2-1)+p^2-3)*p^(2*e+4) + e*(p^2-1) + 3*p^2 - 1)/(p^2-1)^3 ; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2023 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - X)^2 / (1 - p^2*X)^2)[n], ", ")) \\ Vaclav Kotesovec, Sep 26 2020

Formula

a(n) = Sum_{d|n} sigma_2(d) * sigma_2(n/d), where sigma_2 = A001157.
a(n) = Sum_{d|n} d^2 * tau(d) * tau(n/d), where tau = A000005.
Sum_{k=1..n} a(k) ~ zeta(3) * n^3 * (zeta(3)*(log(n)/3 + 2*gamma/3 - 1/9) + 2*zeta'(3)/3), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 17 2019
Multiplicative with a(p^e) = ((e*(p^2-1)+p^2-3)*p^(2*e+4) + e*(p^2-1) + 3*p^2 - 1)/(p^2-1)^3. - Amiram Eldar, Sep 15 2023

A386013 a(n) = n^4*tau(n).

Original entry on oeis.org

1, 32, 162, 768, 1250, 5184, 4802, 16384, 19683, 40000, 29282, 124416, 57122, 153664, 202500, 327680, 167042, 629856, 260642, 960000, 777924, 937024, 559682, 2654208, 1171875, 1827904, 2125764, 3687936, 1414562, 6480000, 1847042, 6291456, 4743684, 5345344, 6002500, 15116544, 3748322, 8340544, 9253764, 20480000
Offset: 1

Views

Author

R. J. Mathar, Jul 14 2025

Keywords

Comments

Dirichlet convolution of the 4th powers A000583 with themselves.

Crossrefs

Cf. A000005, A000583, A001620, A034714, A038040, A372931 (Mobius transform).

Programs

  • Maple
    seq( n^4*numtheory[tau](n),n=1..100) ;
  • Mathematica
    a[n_]:=n^4*DivisorSigma[0,n]; Array[a,40] (* Stefano Spezia, Jul 14 2025 *)
    nmax = 40; Rest[CoefficientList[Series[Sum[k^4*x^k*(1 + 11*x^k + 11*x^(2*k) + x^(3*k))/(1 - x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 03 2025 *)
  • PARI
    a(n) = n^4 * numdiv(n); \\ Amiram Eldar, Jul 15 2025

Formula

a(n) = A000005(n) * A000583(n).
a(n) = n^2*A034714(n) = n^3*A038040(n) = n*A386012(n).
Dirichlet g.f.: zeta^2(s-4).
From Amiram Eldar, Jul 15 2025 (Start)
Multiplicative with a(p^e) = p^(4*e) * (e+1).
Sum_{k=1..n} a(k) ~ (n^5/5) * (log(n) + 2*gamma - 1/5), where gamma is Euler's constant (A001620). (End)
G.f.: Sum_{k>=1} k^4*x^k*(1 + 11*x^k + 11*x^(2*k) + x^(3*k))/(1 - x^k)^5. - Vaclav Kotesovec, Aug 03 2025
Showing 1-9 of 9 results.