cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A360428 Inverse Mobius transformation of A338164.

Original entry on oeis.org

1, 7, 17, 40, 49, 119, 97, 208, 225, 343, 241, 680, 337, 679, 833, 1024, 577, 1575, 721, 1960, 1649, 1687, 1057, 3536, 1825, 2359, 2673, 3880, 1681, 5831, 1921, 4864, 4097, 4039, 4753, 9000, 2737, 5047, 5729, 10192, 3361, 11543, 3697, 9640, 11025, 7399, 4417, 17408, 7105, 12775
Offset: 1

Views

Author

R. J. Mathar, Feb 07 2023

Keywords

Crossrefs

Programs

  • Maple
    A360428 := proc(n)
        add(numtheory[mobius](n/d)*numtheory[tau](d)*d^2,d=numtheory[divisors](n)) ;
    end proc:
  • Mathematica
    f[p_, e_] := (e + 1 - e/p^2)*p^(2*e); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 09 2023 *)

Formula

a(n) = Sum_{d|n} A008683(n/d)*A000005(d)*d^2.
Dirichlet convolution of A034714 and A008683.
Dirichlet g.f.: zeta^2(s-2)/zeta(s).
From Amiram Eldar, Feb 09 2023: (Start)
Multiplicative with a(p^e) = (e + 1 - e/p^2)*p^(2*e).
Sum_{k=1..n} a(k) ~ (log(n) + 2*gamma - 1/3 - zeta'(3)/zeta(3)) * n^3 / (3*zeta(3)), where gamma is Euler's constant (A001620). (End)
From Peter Bala, Jan 16 2024: (Start)
a(n) = Sum_{1 <= i, j <= n} gcd(i, j, n)^2. Cf. A069097.
a(n) = Sum_{d divides n} d^2 * J_2(n/d), where J_2(n) = A007434(n). (End)

A341772 a(n) = Sum_{d|n} phi(d) * J_2(n/d).

Original entry on oeis.org

1, 4, 10, 17, 28, 40, 54, 70, 94, 112, 130, 170, 180, 216, 280, 284, 304, 376, 378, 476, 540, 520, 550, 700, 716, 720, 858, 918, 868, 1120, 990, 1144, 1300, 1216, 1512, 1598, 1404, 1512, 1800, 1960, 1720, 2160, 1890, 2210, 2632, 2200, 2254, 2840, 2682, 2864, 3040, 3060, 2860, 3432, 3640
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 19 2021

Keywords

Comments

Dirichlet convolution of Euler totient function phi (A000010) with Jordan function J_2 (A007434).

Crossrefs

Programs

  • Mathematica
    Jordan2[n_] := Sum[MoebiusMu[n/d] d^2, {d, Divisors[n]}]; a[n_] := Sum[EulerPhi[d] Jordan2[n/d], {d, Divisors[n]}]; Table[a[n], {n, 55}]
    f[p_, e_] := p^(e-3)*(p-1)*(p^e*(p+1)^2-p); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 31 2024 *)
  • PARI
    J2(n) = sumdiv(n, d, d^2 * moebius(n/d)); \\ A007434
    a(n) = sumdiv(n, d, eulerphi(d) * J2(n/d)); \\ Michel Marcus, Feb 20 2021

Formula

Dirichlet g.f.: zeta(s-1) * zeta(s-2) / zeta(s)^2.
a(n) = Sum_{k=1..n} J_2(gcd(n,k)).
a(n) = Sum_{d|n} psi(d) * phi(d) * phi(n/d).
a(n) = Sum_{d|n} d * phi(d) * A029935(n/d).
a(n) = Sum_{d|n} d * sigma(d) * A007427(n/d).
a(n) = Sum_{d|n} d * A321322(n/d).
a(n) = Sum_{d|n} d * A023900(d) * A338164(n/d).
a(n) = Sum_{d|n} d^2 * A007431(n/d).
a(n) = Sum_{d|n} mu(n/d) * A069097(d).
Sum_{k=1..n} a(k) ~ Pi^2 * n^3 / (18*zeta(3)^2). - Vaclav Kotesovec, Feb 20 2021
a(n) = Sum_{k=1..n} J_2(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
a(n) = Sum_{1 <= i, j <= n} phi(gcd(i, j, n)). - Peter Bala, Jan 21 2024
Multiplicative with a(p^e) = p^(e-3)*(p-1)*(p^e*(p+1)^2-p). - Amiram Eldar, May 31 2024

A338165 Dirichlet g.f.: (zeta(s-3) / zeta(s))^2.

Original entry on oeis.org

1, 14, 52, 161, 248, 728, 684, 1680, 2080, 3472, 2660, 8372, 4392, 9576, 12896, 16576, 9824, 29120, 13716, 39928, 35568, 37240, 24332, 87360, 46376, 61488, 74412, 110124, 48776, 180544, 59580, 157696, 138320, 137536, 169632, 334880, 101304, 192024, 228384, 416640
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 14 2020

Keywords

Comments

Dirichlet convolution of Jordan function J_3 (A059376) with itself.

Crossrefs

Programs

  • Mathematica
    Jordan3[n_] := Sum[d^3 MoebiusMu[n/d], {d, Divisors[n]}]; a[n_] := Sum[Jordan3[d] Jordan3[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 40}]
    a[1] = 1; f[p_, e_] := p^(3 e - 6) (p^6 + e (p^3 - 1)^2 - 1); a[n_] := Times @@ f @@@ FactorInteger[n]; Table[a[n], {n, 1, 40}]

Formula

Multiplicative with a(p^e) = p^(3*e - 6) * (p^6 + e * (p^3 - 1)^2 - 1).
a(n) = Sum_{d|n} J_3(d) * J_3(n/d).
a(n) = Sum_{d|n} d^3 * tau(d) * A007427(n/d), where tau = A000005.
(1/tau(n)) * Sum_{d|n} a(d) * tau(n/d) = n^3.
Sum_{k=1..n} a(k) ~ 2025 * n^4 * ((log(n) + 2*gamma - 1/4)/Pi^8 - 180*zeta'(4) / Pi^12), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 14 2020
Showing 1-3 of 3 results.