A360428 Inverse Mobius transformation of A338164.
1, 7, 17, 40, 49, 119, 97, 208, 225, 343, 241, 680, 337, 679, 833, 1024, 577, 1575, 721, 1960, 1649, 1687, 1057, 3536, 1825, 2359, 2673, 3880, 1681, 5831, 1921, 4864, 4097, 4039, 4753, 9000, 2737, 5047, 5729, 10192, 3361, 11543, 3697, 9640, 11025, 7399, 4417, 17408, 7105, 12775
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A360428 := proc(n) add(numtheory[mobius](n/d)*numtheory[tau](d)*d^2,d=numtheory[divisors](n)) ; end proc:
-
Mathematica
f[p_, e_] := (e + 1 - e/p^2)*p^(2*e); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 09 2023 *)
Formula
Dirichlet g.f.: zeta^2(s-2)/zeta(s).
From Amiram Eldar, Feb 09 2023: (Start)
Multiplicative with a(p^e) = (e + 1 - e/p^2)*p^(2*e).
Sum_{k=1..n} a(k) ~ (log(n) + 2*gamma - 1/3 - zeta'(3)/zeta(3)) * n^3 / (3*zeta(3)), where gamma is Euler's constant (A001620). (End)
From Peter Bala, Jan 16 2024: (Start)
a(n) = Sum_{1 <= i, j <= n} gcd(i, j, n)^2. Cf. A069097.
a(n) = Sum_{d divides n} d^2 * J_2(n/d), where J_2(n) = A007434(n). (End)
Comments