A069097
Moebius transform of A064987, n*sigma(n).
Original entry on oeis.org
1, 5, 11, 22, 29, 55, 55, 92, 105, 145, 131, 242, 181, 275, 319, 376, 305, 525, 379, 638, 605, 655, 551, 1012, 745, 905, 963, 1210, 869, 1595, 991, 1520, 1441, 1525, 1595, 2310, 1405, 1895, 1991, 2668, 1721, 3025, 1891, 2882, 3045, 2755, 2255, 4136, 2737
Offset: 1
-
A069097[n_]:=n^2*Plus @@((EulerPhi[#]/#^2)&/@ Divisors[n]); Array[A069097, 100] (* Enrique Pérez Herrero, Feb 25 2012 *)
f[p_, e_] := p^(e-1)*(p^e*(p+1)-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
-
for(n=1,100,print1((sumdiv(n,k,k*sigma(k)*moebius(n/k))),","))
A368743
a(n) = Sum_{1 <= i, j <= n} gcd(i, j, n)^3.
Original entry on oeis.org
1, 11, 35, 100, 149, 385, 391, 848, 1017, 1639, 1451, 3500, 2365, 4301, 5215, 6976, 5201, 11187, 7219, 14900, 13685, 15961, 12695, 29680, 19225, 26015, 28107, 39100, 25229, 57365, 30751, 56576, 50785, 57211, 58259, 101700, 52021, 79409, 82775, 126352
Offset: 1
-
seq( add(add(igcd(i, j, n)^3, i = 1..n), j = 1..n), n = 1..50);
# faster program for large n
with(numtheory):
A007434 := proc(n) add(d^2*mobius(n/d), d in divisors(n)) end proc:
seq( add(d^3*A007434(n/d), d in divisors(n)), n = 1..500);
-
f[p_, e_] := p^(3*e - 2)*(p^2 + p + 1) - p^(2*e - 2)*(p + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 29 2024 *)
-
a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; p^(3*e - 2)*(p^2 + p + 1) - p^(2*e - 2)*(p + 1));} \\ Amiram Eldar, Jan 29 2024
-
from math import prod
from sympy import factorint
def A368743(n): return prod(p**(e-1<<1)*(p**e*(p*(q:=p+1)+1)-q) for p, e in factorint(n).items()) # Chai Wah Wu, Jan 29 2024
A372926
a(n) = Sum_{1 <= x_1, x_2 <= n} gcd(x_1, x_2, n)^4.
Original entry on oeis.org
1, 19, 89, 316, 649, 1691, 2449, 5104, 7281, 12331, 14761, 28124, 28729, 46531, 57761, 81856, 83809, 138339, 130681, 205084, 217961, 280459, 280369, 454256, 406225, 545851, 590409, 773884, 708121, 1097459, 924481, 1310464, 1313729, 1592371, 1589401, 2300796
Offset: 1
-
f[p_, e_] := p^(2*e-2) * (p^2 * (p^(2*e+2)-1) - p^(2*e) + 1)/(p^2-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
-
a(n) = sumdiv(n, d, moebius(n/d)*d^2*sigma(d, 2));
A368929
Dirichlet g.f.: zeta(s-2)^2 * (1 - 2^(3-s)) / zeta(s).
Original entry on oeis.org
1, -1, 17, -16, 49, -17, 97, -112, 225, -49, 241, -272, 337, -97, 833, -640, 577, -225, 721, -784, 1649, -241, 1057, -1904, 1825, -337, 2673, -1552, 1681, -833, 1921, -3328, 4097, -577, 4753, -3600, 2737, -721, 5729, -5488, 3361, -1649, 3697, -3856, 11025, -1057, 4417
Offset: 1
-
Table[Sum[Sum[d^2 * MoebiusMu[k/d], {d, Divisors[k]}] * (-1)^(n/k + 1) * n^2/k^2, {k, Divisors[n]}], {n, 1, 100}]
f[p_, e_] := p^(2*e)*(1 + e*(1 - 1/p^2)); f[2, e_] := -(3*e - 2)*2^(2*e - 2); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 12 2024 *)
-
a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; if(p == 2, -(3*e-2)*2^(2*e-2), p^(2*e)*(1 + e*(1-1/p^2))));} \\ Amiram Eldar, Jan 12 2024
A372938
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{1 <= x_1, x_2, ..., x_k <= n} gcd(x_1, x_2, ..., x_k, n)^k.
Original entry on oeis.org
1, 1, 3, 1, 7, 5, 1, 15, 17, 8, 1, 31, 53, 40, 9, 1, 63, 161, 176, 49, 15, 1, 127, 485, 736, 249, 119, 13, 1, 255, 1457, 3008, 1249, 795, 97, 20, 1, 511, 4373, 12160, 6249, 4991, 685, 208, 21, 1, 1023, 13121, 48896, 31249, 30555, 4801, 1856, 225, 27
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
3, 7, 15, 31, 63, 127, 255, ...
5, 17, 53, 161, 485, 1457, 4373, ...
8, 40, 176, 736, 3008, 12160, 48896, ...
9, 49, 249, 1249, 6249, 31249, 156249, ...
15, 119, 795, 4991, 30555, 185039, 1115115, ...
13, 97, 685, 4801, 33613, 235297, 1647085, ...
-
f[p_, e_, k_] := (e - e/p^k + 1)*p^(k*e); T[1, k_] := 1; T[n_, k_] := Times @@ (f[First[#], Last[#], k] & /@ FactorInteger[n]); Table[T[k, n - k + 1], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 25 2024 *)
-
T(n,k) = sumdiv(n, d, moebius(n/d)*d^k*numdiv(d));
A372927
a(n) = Sum_{1 <= x_1, x_2 <= n} gcd(x_1, x_2, n)^5.
Original entry on oeis.org
1, 35, 251, 1132, 3149, 8785, 16855, 36272, 61065, 110215, 161171, 284132, 371461, 589925, 790399, 1160896, 1420145, 2137275, 2476459, 3564668, 4230605, 5640985, 6436871, 9104272, 9841225, 13001135, 14839443, 19079860, 20511989, 27663965, 28630111, 37149440, 40453921
Offset: 1
-
f[p_, e_] := p^(2*e-2) * (p^2 * (p^(3*e+3)-1) - p^(3*e) + 1)/(p^3-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
-
a(n) = sumdiv(n, d, moebius(n/d)*d^2*sigma(d, 3));
Showing 1-6 of 6 results.
Comments