cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A069097 Moebius transform of A064987, n*sigma(n).

Original entry on oeis.org

1, 5, 11, 22, 29, 55, 55, 92, 105, 145, 131, 242, 181, 275, 319, 376, 305, 525, 379, 638, 605, 655, 551, 1012, 745, 905, 963, 1210, 869, 1595, 991, 1520, 1441, 1525, 1595, 2310, 1405, 1895, 1991, 2668, 1721, 3025, 1891, 2882, 3045, 2755, 2255, 4136, 2737
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

Equals A127569 * [1, 2, 3, ...]. - Gary W. Adamson, Jan 19 2007
Equals row sums of triangle A143309 and of triangle A143312. - Gary W. Adamson, Aug 06 2008
Dirichlet convolution of A000290 and A000010 (see Jovovic formula). - R. J. Mathar, Feb 03 2011

Crossrefs

Column 2 of A343510.
For Sum_{k = 1..n} gcd(k,n)^m see A018804 (m = 1), A343497 (m = 3), A343498 (m = 4) and A343499 (m = 5).

Programs

  • Mathematica
    A069097[n_]:=n^2*Plus @@((EulerPhi[#]/#^2)&/@ Divisors[n]); Array[A069097, 100] (* Enrique Pérez Herrero, Feb 25 2012 *)
    f[p_, e_] := p^(e-1)*(p^e*(p+1)-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    for(n=1,100,print1((sumdiv(n,k,k*sigma(k)*moebius(n/k))),","))

Formula

a(n) = Sum_{d|n} d^2*phi(n/d). - Vladeta Jovovic, Jul 31 2002
a(n) = Sum_{k=1..n} gcd(n, k)^2. - Vladeta Jovovic, Aug 27 2003
Dirichlet g.f.: zeta(s-2)*zeta(s-1)/zeta(s). - R. J. Mathar, Feb 03 2011
a(n) = n*Sum_{d|n} J_2(d)/d, where J_2 is A007434. - Enrique Pérez Herrero, Feb 25 2012.
G.f.: Sum_{n >= 1} phi(n)*(x^n + x^(2*n))/(1 - x^n)^3 = x + 5*x^2 + 11*x^3 + 22*x^4 + .... - Peter Bala, Dec 30 2013
Multiplicative with a(p^e) = p^(e-1)*(p^e*(p+1)-1). - R. J. Mathar, Jun 23 2018
Sum_{k=1..n} a(k) ~ Pi^2 * n^3 / (18*zeta(3)). - Vaclav Kotesovec, Sep 18 2020
a(n) = Sum_{k=1..n} (n/gcd(n,k))^2*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
From Peter Bala, Dec 26 2023: (Start)
For n odd, a(n) = Sum_{k = 1..n} gcd(k,n)/cos(k*Pi/n)^2 (see Osipov and also Chu, p. 51).
It appears that for n odd, Sum_{k = 1..n} (-1)^(k+1)*gcd(k,n)/cos(k*Pi/n)^2 = n. (End)
a(n) = Sum_{1 <= i, j <= n} gcd(i, j, n). Cf. A360428. - Peter Bala, Jan 16 2024
Sum_{k=1..n} a(k)/k ~ Pi^2 * n^2 / (12*zeta(3)). - Vaclav Kotesovec, May 11 2024

A368743 a(n) = Sum_{1 <= i, j <= n} gcd(i, j, n)^3.

Original entry on oeis.org

1, 11, 35, 100, 149, 385, 391, 848, 1017, 1639, 1451, 3500, 2365, 4301, 5215, 6976, 5201, 11187, 7219, 14900, 13685, 15961, 12695, 29680, 19225, 26015, 28107, 39100, 25229, 57365, 30751, 56576, 50785, 57211, 58259, 101700, 52021, 79409, 82775, 126352
Offset: 1

Views

Author

Peter Bala, Jan 20 2024

Keywords

Crossrefs

Programs

  • Maple
    seq( add(add(igcd(i, j, n)^3, i = 1..n), j = 1..n), n = 1..50);
    # faster program for large n
    with(numtheory):
    A007434 := proc(n) add(d^2*mobius(n/d), d in divisors(n)) end proc:
    seq( add(d^3*A007434(n/d), d in divisors(n)), n = 1..500);
  • Mathematica
    f[p_, e_] := p^(3*e - 2)*(p^2 + p + 1) - p^(2*e - 2)*(p + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 29 2024 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; p^(3*e - 2)*(p^2 + p + 1) - p^(2*e - 2)*(p + 1));} \\ Amiram Eldar, Jan 29 2024
    
  • Python
    from math import prod
    from sympy import factorint
    def A368743(n): return prod(p**(e-1<<1)*(p**e*(p*(q:=p+1)+1)-q) for p, e in factorint(n).items()) # Chai Wah Wu, Jan 29 2024

Formula

a(n) = Sum_{1 <= i, j, k <= n} gcd(i, j, k, n)^2.
a(n) = Sum_{d divides n} d^3 * J_2(n/d) = Sum_{d divides n} d^2 * J_3(n/d), where the Jordan totient functions J_2(n) = A007434(n) and J_3(n) = A059376(n).
Dirichlet g.f.: zeta(s-2) * zeta(s-3)/zeta(s).
a(n) is a multiplicative function: for prime p, a(p^k) = p^(3*k-2)*(p^2 + p + 1) - p^(2*k-2)*(p + 1).
Sum_{k=1..n} a(k) ~ c * n^4, where c = 15/(4*Pi^2) = 0.379954... . - Amiram Eldar, Jan 29 2024
a(n) = Sum_{d divides n} mobius(n/d) * d^2 * sigma(d). - Peter Bala, Jan 29 2024

A372926 a(n) = Sum_{1 <= x_1, x_2 <= n} gcd(x_1, x_2, n)^4.

Original entry on oeis.org

1, 19, 89, 316, 649, 1691, 2449, 5104, 7281, 12331, 14761, 28124, 28729, 46531, 57761, 81856, 83809, 138339, 130681, 205084, 217961, 280459, 280369, 454256, 406225, 545851, 590409, 773884, 708121, 1097459, 924481, 1310464, 1313729, 1592371, 1589401, 2300796
Offset: 1

Views

Author

Seiichi Manyama, May 17 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2*e-2) * (p^2 * (p^(2*e+2)-1) - p^(2*e) + 1)/(p^2-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d^2*sigma(d, 2));

Formula

a(n) = Sum_{1 <= x_1, x_2, x_3, x_4 <= n} gcd(x_1, x_2, x_3, x_4, n)^2.
a(n) = Sum_{d|n} mu(n/d) * d^2 * sigma_2(d), where mu is the Moebius function A008683.
From Amiram Eldar, May 21 2024: (Start)
Multiplicative with a(p^e) = p^(2*e-2) * (p^2 * (p^(2*e+2)-1) - p^(2*e) + 1)/(p^2-1).
Dirichlet g.f.: zeta(s-2)*zeta(s-4)/zeta(s).
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = zeta(3)/zeta(5) = 1.1592484598... . (End)

A368929 Dirichlet g.f.: zeta(s-2)^2 * (1 - 2^(3-s)) / zeta(s).

Original entry on oeis.org

1, -1, 17, -16, 49, -17, 97, -112, 225, -49, 241, -272, 337, -97, 833, -640, 577, -225, 721, -784, 1649, -241, 1057, -1904, 1825, -337, 2673, -1552, 1681, -833, 1921, -3328, 4097, -577, 4753, -3600, 2737, -721, 5729, -5488, 3361, -1649, 3697, -3856, 11025, -1057, 4417
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 12 2024

Keywords

Comments

Dirichlet convolution of A007434 and A162395.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[d^2 * MoebiusMu[k/d], {d, Divisors[k]}] * (-1)^(n/k + 1) * n^2/k^2, {k, Divisors[n]}], {n, 1, 100}]
    f[p_, e_] := p^(2*e)*(1 + e*(1 - 1/p^2)); f[2, e_] := -(3*e - 2)*2^(2*e - 2); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 12 2024 *)
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; if(p == 2, -(3*e-2)*2^(2*e-2), p^(2*e)*(1 + e*(1-1/p^2))));} \\ Amiram Eldar, Jan 12 2024

Formula

Sum_{k=1..n} a(k) ~ log(2) * n^3 / (3*zeta(3)).
Multiplicative with a(2^e) = -(3*e-2)*2^(2*e-2), and a(p^e) = p^(2*e)*(1 + e*(1-1/p^2)) for an odd prime p. - Amiram Eldar, Jan 12 2024

A372938 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{1 <= x_1, x_2, ..., x_k <= n} gcd(x_1, x_2, ..., x_k, n)^k.

Original entry on oeis.org

1, 1, 3, 1, 7, 5, 1, 15, 17, 8, 1, 31, 53, 40, 9, 1, 63, 161, 176, 49, 15, 1, 127, 485, 736, 249, 119, 13, 1, 255, 1457, 3008, 1249, 795, 97, 20, 1, 511, 4373, 12160, 6249, 4991, 685, 208, 21, 1, 1023, 13121, 48896, 31249, 30555, 4801, 1856, 225, 27
Offset: 1

Views

Author

Seiichi Manyama, May 17 2024

Keywords

Examples

			Square array begins:
   1,   1,   1,    1,     1,      1,       1, ...
   3,   7,  15,   31,    63,    127,     255, ...
   5,  17,  53,  161,   485,   1457,    4373, ...
   8,  40, 176,  736,  3008,  12160,   48896, ...
   9,  49, 249, 1249,  6249,  31249,  156249, ...
  15, 119, 795, 4991, 30555, 185039, 1115115, ...
  13,  97, 685, 4801, 33613, 235297, 1647085, ...
		

Crossrefs

Columns k=1..4 give: A018804, A360428, A372928, A372931.
Main diagonal gives A372939.

Programs

  • Mathematica
    f[p_, e_, k_] := (e - e/p^k + 1)*p^(k*e); T[1, k_] := 1; T[n_, k_] := Times @@ (f[First[#], Last[#], k] & /@ FactorInteger[n]); Table[T[k, n - k + 1], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 25 2024 *)
  • PARI
    T(n,k) = sumdiv(n, d, moebius(n/d)*d^k*numdiv(d));

Formula

a(n) = Sum_{d|n} mu(n/d) * d^k * tau(d), where mu is the Moebius function A008683.
From Amiram Eldar, May 25 2024: (Start)
T(n,k) for a given k is multiplicative with T(p^e, k) = (e - e/p^k + 1) * p^(k*e).
Dirichlet g.f. of T(n, k) for a given k: zeta(s-k)^2/zeta(s).
Sum_{m=1..n} T(m, k) ~ (n^(k+1)/((k+1)*zeta(k+1))) * (log(n) + 2*gamma - 1/(k+1) - zeta'(k+1)/zeta(k+1)), where gamma is Euler's constant (A001620). (End)

A372927 a(n) = Sum_{1 <= x_1, x_2 <= n} gcd(x_1, x_2, n)^5.

Original entry on oeis.org

1, 35, 251, 1132, 3149, 8785, 16855, 36272, 61065, 110215, 161171, 284132, 371461, 589925, 790399, 1160896, 1420145, 2137275, 2476459, 3564668, 4230605, 5640985, 6436871, 9104272, 9841225, 13001135, 14839443, 19079860, 20511989, 27663965, 28630111, 37149440, 40453921
Offset: 1

Views

Author

Seiichi Manyama, May 17 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2*e-2) * (p^2 * (p^(3*e+3)-1) - p^(3*e) + 1)/(p^3-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d^2*sigma(d, 3));

Formula

a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} gcd(x_1, x_2, x_3, x_4, x_5, n)^2.
a(n) = Sum_{d|n} mu(n/d) * d^2 * sigma_3(d), where mu is the Moebius function A008683.
From Amiram Eldar, May 21 2024: (Start)
Multiplicative with a(p^e) = p^(2*e-2) * (p^2 * (p^(3*e+3)-1) - p^(3*e) + 1)/(p^3-1).
Dirichlet g.f.: zeta(s-2)*zeta(s-5)/zeta(s).
Sum_{k=1..n} a(k) ~ c * n^6 / 6, where c = zeta(4)/zeta(6) = 21/(2*Pi^2) = 1.0638724... (A088246). (End)
Showing 1-6 of 6 results.