A343510
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{j=1..n} gcd(j, n)^k.
Original entry on oeis.org
1, 1, 3, 1, 5, 5, 1, 9, 11, 8, 1, 17, 29, 22, 9, 1, 33, 83, 74, 29, 15, 1, 65, 245, 274, 129, 55, 13, 1, 129, 731, 1058, 629, 261, 55, 20, 1, 257, 2189, 4162, 3129, 1411, 349, 92, 21, 1, 513, 6563, 16514, 15629, 8085, 2407, 596, 105, 27, 1, 1025, 19685, 65794, 78129, 47515, 16813, 4388, 789, 145, 21
Offset: 1
G.f. of column 3: Sum_{i>=1} phi(i) * (x^i + 4*x^(2*i) + x^(3*i))/(1 - x^i)^4.
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
3, 5, 9, 17, 33, 65, 129, ...
5, 11, 29, 83, 245, 731, 2189, ...
8, 22, 74, 274, 1058, 4162, 16514, ...
9, 29, 129, 629, 3129, 15629, 78129, ...
15, 55, 261, 1411, 8085, 47515, 282381, ...
13, 55, 349, 2407, 16813, 117655, 823549, ...
-
T[n_, k_] := DivisorSum[n, EulerPhi[n/#] * #^k &]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 18 2021 *)
-
T(n, k) = sum(j=1, n, gcd(j, n)^k);
-
T(n, k) = sumdiv(n, d, eulerphi(n/d)*d^k);
-
T(n, k) = sumdiv(n, d, moebius(n/d)*d*sigma(d, k-1));
A078615
a(n) = rad(n)^2, where rad is the squarefree kernel of n (A007947).
Original entry on oeis.org
1, 4, 9, 4, 25, 36, 49, 4, 9, 100, 121, 36, 169, 196, 225, 4, 289, 36, 361, 100, 441, 484, 529, 36, 25, 676, 9, 196, 841, 900, 961, 4, 1089, 1156, 1225, 36, 1369, 1444, 1521, 100, 1681, 1764, 1849, 484, 225, 2116, 2209, 36, 49, 100, 2601, 676, 2809, 36, 3025, 196
Offset: 1
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Peter Bala, GCD sum theorems. Two Multivariable Cesaro Type Identities.
- K. Broughan, J.-M. De Koninck, I. Kátai, and F. Luca, On integers for which the sum of divisors is the square of the squarefree core, J. Integer Seq., 15 (2012), pp. 1-12.
- Yong-Gao Chen, and Xin Tong, On a conjecture of de Koninck, Journal of Number Theory, Volume 154, September 2015, Pages 324-364. Beware of typo 1728.
-
a := n -> mul(f,f=map(x->x^2,select(isprime,divisors(n))));
seq(a(n), n=1..56); # Peter Luschny, Mar 30 2014
-
a[n_] := Times @@ FactorInteger[n][[All, 1]]^2; Array[a, 60] (* Jean-François Alcover, Jun 04 2019 *)
-
a(n)=my(f=factor(n)[,1]);prod(i=1,#f,f[i])^2 \\ Charles R Greathouse IV, Aug 06 2013
A372929
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} gcd(x_1, x_2, x_3, n)^4.
Original entry on oeis.org
1, 23, 107, 424, 749, 2461, 2743, 7232, 9369, 17227, 15971, 45368, 30757, 63089, 80143, 119296, 88433, 215487, 137179, 317576, 293501, 367333, 292007, 773824, 483625, 707411, 777843, 1163032, 731669, 1843289, 953311, 1937408, 1708897, 2033959, 2054507, 3972456
Offset: 1
-
f[p_, e_] := p^(3*e-3) * (p^3 * (p^(e+1)-1) - p^e + 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
-
a(n) = sumdiv(n, d, moebius(n/d)*d^3*sigma(d));
A372926
a(n) = Sum_{1 <= x_1, x_2 <= n} gcd(x_1, x_2, n)^4.
Original entry on oeis.org
1, 19, 89, 316, 649, 1691, 2449, 5104, 7281, 12331, 14761, 28124, 28729, 46531, 57761, 81856, 83809, 138339, 130681, 205084, 217961, 280459, 280369, 454256, 406225, 545851, 590409, 773884, 708121, 1097459, 924481, 1310464, 1313729, 1592371, 1589401, 2300796
Offset: 1
-
f[p_, e_] := p^(2*e-2) * (p^2 * (p^(2*e+2)-1) - p^(2*e) + 1)/(p^2-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
-
a(n) = sumdiv(n, d, moebius(n/d)*d^2*sigma(d, 2));
A372928
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} gcd(x_1, x_2, x_3, n)^3.
Original entry on oeis.org
1, 15, 53, 176, 249, 795, 685, 1856, 2133, 3735, 2661, 9328, 4393, 10275, 13197, 18432, 9825, 31995, 13717, 43824, 36305, 39915, 24333, 98368, 46625, 65895, 76545, 120560, 48777, 197955, 59581, 176128, 141033, 147375, 170565, 375408, 101305, 205755, 232829, 462144
Offset: 1
-
f[p_, e_] := (e - e/p^3 + 1) * p^(3*e); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
-
a(n) = sumdiv(n, d, moebius(n/d)*d^3*numdiv(d));
A372930
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} gcd(x_1, x_2, x_3, n)^5.
Original entry on oeis.org
1, 39, 269, 1304, 3249, 10491, 17149, 42176, 66069, 126711, 162381, 350776, 373489, 668811, 873981, 1353216, 1424769, 2576691, 2482957, 4236696, 4613081, 6332859, 6448509, 11345344, 10168625, 14566071, 16073721, 22362296, 20535537, 34085259, 28658941, 43331584
Offset: 1
-
f[p_, e_] := p^(3*e-3) * (p^3 * (p^(2*e+2)-1) - p^(2*e) + 1)/(p^2-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
-
a(n) = sumdiv(n, d, moebius(n/d)*d^3*sigma(d, 2));
A372927
a(n) = Sum_{1 <= x_1, x_2 <= n} gcd(x_1, x_2, n)^5.
Original entry on oeis.org
1, 35, 251, 1132, 3149, 8785, 16855, 36272, 61065, 110215, 161171, 284132, 371461, 589925, 790399, 1160896, 1420145, 2137275, 2476459, 3564668, 4230605, 5640985, 6436871, 9104272, 9841225, 13001135, 14839443, 19079860, 20511989, 27663965, 28630111, 37149440, 40453921
Offset: 1
-
f[p_, e_] := p^(2*e-2) * (p^2 * (p^(3*e+3)-1) - p^(3*e) + 1)/(p^3-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
-
a(n) = sumdiv(n, d, moebius(n/d)*d^2*sigma(d, 3));
Showing 1-7 of 7 results.
Comments