A372929
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} gcd(x_1, x_2, x_3, n)^4.
Original entry on oeis.org
1, 23, 107, 424, 749, 2461, 2743, 7232, 9369, 17227, 15971, 45368, 30757, 63089, 80143, 119296, 88433, 215487, 137179, 317576, 293501, 367333, 292007, 773824, 483625, 707411, 777843, 1163032, 731669, 1843289, 953311, 1937408, 1708897, 2033959, 2054507, 3972456
Offset: 1
-
f[p_, e_] := p^(3*e-3) * (p^3 * (p^(e+1)-1) - p^e + 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
-
a(n) = sumdiv(n, d, moebius(n/d)*d^3*sigma(d));
A372930
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} gcd(x_1, x_2, x_3, n)^5.
Original entry on oeis.org
1, 39, 269, 1304, 3249, 10491, 17149, 42176, 66069, 126711, 162381, 350776, 373489, 668811, 873981, 1353216, 1424769, 2576691, 2482957, 4236696, 4613081, 6332859, 6448509, 11345344, 10168625, 14566071, 16073721, 22362296, 20535537, 34085259, 28658941, 43331584
Offset: 1
-
f[p_, e_] := p^(3*e-3) * (p^3 * (p^(2*e+2)-1) - p^(2*e) + 1)/(p^2-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
-
a(n) = sumdiv(n, d, moebius(n/d)*d^3*sigma(d, 2));
A372938
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{1 <= x_1, x_2, ..., x_k <= n} gcd(x_1, x_2, ..., x_k, n)^k.
Original entry on oeis.org
1, 1, 3, 1, 7, 5, 1, 15, 17, 8, 1, 31, 53, 40, 9, 1, 63, 161, 176, 49, 15, 1, 127, 485, 736, 249, 119, 13, 1, 255, 1457, 3008, 1249, 795, 97, 20, 1, 511, 4373, 12160, 6249, 4991, 685, 208, 21, 1, 1023, 13121, 48896, 31249, 30555, 4801, 1856, 225, 27
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
3, 7, 15, 31, 63, 127, 255, ...
5, 17, 53, 161, 485, 1457, 4373, ...
8, 40, 176, 736, 3008, 12160, 48896, ...
9, 49, 249, 1249, 6249, 31249, 156249, ...
15, 119, 795, 4991, 30555, 185039, 1115115, ...
13, 97, 685, 4801, 33613, 235297, 1647085, ...
-
f[p_, e_, k_] := (e - e/p^k + 1)*p^(k*e); T[1, k_] := 1; T[n_, k_] := Times @@ (f[First[#], Last[#], k] & /@ FactorInteger[n]); Table[T[k, n - k + 1], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 25 2024 *)
-
T(n,k) = sumdiv(n, d, moebius(n/d)*d^k*numdiv(d));
A386012
a(n) = n^3*tau(n).
Original entry on oeis.org
1, 16, 54, 192, 250, 864, 686, 2048, 2187, 4000, 2662, 10368, 4394, 10976, 13500, 20480, 9826, 34992, 13718, 48000, 37044, 42592, 24334, 110592, 46875, 70304, 78732, 131712, 48778, 216000, 59582, 196608, 143748, 157216, 171500, 419904, 101306, 219488, 237276, 512000
Offset: 1
-
seq( n^3*numtheory[tau](n),n=1..100) ;
-
a[n_]:=n^3*DivisorSigma[0,n]; Array[a,40] (* Stefano Spezia, Jul 14 2025 *)
nmax = 40; Rest[CoefficientList[Series[Sum[k^3*x^k*(1 + 4*x^k + x^(2*k))/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 03 2025 *)
-
a(n) = n^3 * numdiv(n); \\ Amiram Eldar, Jul 15 2025
Showing 1-4 of 4 results.
Comments