cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A064987 a(n) = n*sigma(n).

Original entry on oeis.org

1, 6, 12, 28, 30, 72, 56, 120, 117, 180, 132, 336, 182, 336, 360, 496, 306, 702, 380, 840, 672, 792, 552, 1440, 775, 1092, 1080, 1568, 870, 2160, 992, 2016, 1584, 1836, 1680, 3276, 1406, 2280, 2184, 3600, 1722, 4032, 1892, 3696, 3510, 3312, 2256, 5952
Offset: 1

Views

Author

Vladeta Jovovic, Oct 30 2001

Keywords

Comments

Dirichlet convolution of sigma_2(n)=A001157(n) with phi(n)=A000010(n). - Vladeta Jovovic, Oct 27 2002
Equals row sums of triangle A143311 and of triangle A143308. - Gary W. Adamson, Aug 06 2008
a(n) is also the sum of all n's present in A244580, or in other words, a(n) is also the volume (or number of cubes) below the terraces of the n-th level of the staircase described in A244580 (see also A237593). - Omar E. Pol, Oct 11 2018
If n is a superperfect number then sigma(n) is a Mersenne prime and a(n) is a perfect number, a(A019279(k)) = A000396(k), k >= 1, assuming there are no odd perfect numbers. - Omar E. Pol, Apr 15 2020

References

  • B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054. see page 43.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 166-167.

Crossrefs

Main diagonal of A319073.
Cf. A000203, A038040, A002618, A000010, A001157, A143308, A143311, A004009, A006352, A000594, A126832, A069097 (Mobius transform), A001001 (inverse Mobius transform), A237593, A244580.

Programs

  • GAP
    a:=List([1..50],n->n*Sigma(n));; Print(a); # Muniru A Asiru, Jan 01 2019
  • Haskell
    a064987 n = a000203 n * n  -- Reinhard Zumkeller, Jan 21 2014
    
  • Magma
    [n*SumOfDivisors(n): n in [1..70]]; // Vincenzo Librandi, Jan 01 2019
    
  • Maple
    with(numtheory): [n*sigma(n)$n=1..50]; # Muniru A Asiru, Jan 01 2019
  • Mathematica
    # DivisorSigma[1,#]&/@Range[80]  (* Harvey P. Dale, Mar 12 2011 *)
  • MuPAD
    numlib::sigma(n)*n$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if ( n==0, 0, n * sigma(n))}
    
  • PARI
    { for (n=1, 1000, write("b064987.txt", n, " ", n*sigma(n)) ) } \\ Harry J. Smith, Oct 02 2009
    

Formula

Multiplicative with a(p^e) = p^e * (p^(e+1) - 1) / (p - 1).
G.f.: Sum_{n>0} n^2*x^n/(1-x^n)^2. - Vladeta Jovovic, Oct 27 2002
G.f.: phi_{2, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}. - Michael Somos, Apr 02 2003
G.f. is also (Q - P^2) / 288 where P, Q are Ramanujan Lambert series. - Michael Somos, Apr 02 2003. See the Hardy reference, p. 136, eq. (10.5.4) (with a proof). For Q and P, (10.5.6) and (10.5.5), see E_4 A004009 and E_2 A006352, respectively. - Wolfdieter Lang, Jan 30 2017
Convolution of A000118 and A186690. Dirichlet convolution of A000027 and A000290. - Michael Somos, Mar 25 2012
Dirichlet g.f.: zeta(s-1)*zeta(s-2). - R. J. Mathar, Feb 16 2011
a(n) = A009194(n)*A009242(n). - Michel Marcus, Oct 23 2013
a(n) (mod 5) = A126832(n) = A000594(n) (mod 5). See A126832 for references. - Wolfdieter Lang, Feb 03 2017
L.g.f.: Sum_{k>=1} k*x^k/(1 - x^k) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 13 2017
Sum_{k>=1} 1/a(k) = 1.4383899259334187832765458631783591251241657856627653748389234270650138768... - Vaclav Kotesovec, Sep 20 2020
From Peter Bala, Jan 21 2021: (Start)
G.f.: Sum_{n >= 1} n*q^n*(1 + q^n)/(1 - q^n)^3 (use the expansion x*(1 + x)/(1 - x)^3 = x + 2^2*x^2 + 3^2*x^3 + 4^2*x^4 + ...).
A faster converging g.f.: Sum_{n >= 1} q^(n^2)*( n^3*q^(3*n) - (n^3 + 3*n^2 - n)*q^(2*n) - (n^3 - 3*n^2 - n)*q^n + n^3 )/(1 - q^n)^3 - differentiate equation 5 in Arndt w.r.t. both x and q and then set x = 1. (End)
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} sigma_2(gcd(n,k)).
a(n) = Sum_{k=1..n} sigma_2(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
From Peter Bala, Jan 22 2024: (Start)
a(n) = Sum_{1 <= j, k <= n} sigma_1( gcd(j, k, n) ).
a(n) = Sum_{d divides n} sigma_1(d)*J_2(n/d) = Sum_{d divides n} sigma_2(d)* phi(n/d), where the Jordan totient function J_2(n) = A007434(n). (End)

A054523 Triangle read by rows: T(n,k) = phi(n/k) if k divides n, T(n,k)=0 otherwise (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 2, 1, 0, 1, 4, 0, 0, 0, 1, 2, 2, 1, 0, 0, 1, 6, 0, 0, 0, 0, 0, 1, 4, 2, 0, 1, 0, 0, 0, 1, 6, 0, 2, 0, 0, 0, 0, 0, 1, 4, 4, 0, 0, 1, 0, 0, 0, 0, 1, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 1, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 6
Offset: 1

Views

Author

N. J. A. Sloane, Apr 09 2000

Keywords

Comments

From Gary W. Adamson, Jan 08 2007: (Start)
Let H be this lower triangular matrix. Then:
H * [1, 2, 3, ...] = 1, 3, 5, 8, 9, 15, ... = A018804,
H * sigma(n) = A038040 = d(n) * n = 1, 4, 6, 12, 10, ... where sigma(n) = A000203,
H * d(n) (A000005) = sigma(n) = A000203,
Row sums are A000027 (corrected by Werner Schulte, Sep 06 2020, see comment of Gary W. Adamson, Aug 03 2008),
H^2 * d(n) = d(n)*n, H^2 = A127192,
H * mu(n) (A008683) = A007431(n) (corrected by Werner Schulte, Sep 06 2020),
H^2 row sums = A018804. (End)
The Möbius inversion principle of Richard Dedekind and Joseph Liouville (1857), cf. "Concrete Mathematics", p. 136, is equivalent to the statement that row sums are the row index n. - Gary W. Adamson, Aug 03 2008
The multivariable row polynomials give n times the cycle index for the cyclic group C_n, called Z(C_n) (see the MathWorld link with the Harary reference): n*Z(C_n) = Sum_{k=1..n} T(n,k)*(y_{n/k})^k, n >= 1. E.g., 6*Z(C_6) = 2*(y_6)^1 + 2*(y_3)^2 + 1*(y_2)^3 + 1*(y_1)^6. - Wolfdieter Lang, May 22 2012
See A102190 (no 0's, rows reversed). - Wolfdieter Lang, May 29 2012
This is the number of permutations in the n-th cyclic group which are the product of k disjoint cycles. - Robert A. Beeler, Aug 09 2013

Examples

			Triangle begins
   1;
   1, 1;
   2, 0, 1;
   2, 1, 0, 1;
   4, 0, 0, 0, 1;
   2, 2, 1, 0, 0, 1;
   6, 0, 0, 0, 0, 0, 1;
   4, 2, 0, 1, 0, 0, 0, 1;
   6, 0, 2, 0, 0, 0, 0, 0, 1;
   4, 4, 0, 0, 1, 0, 0, 0, 0, 1;
  10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
   4, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 1;
		

References

  • Ronald L. Graham, D. E. Knuth, Oren Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., 1994, p. 136.

Crossrefs

Sums incliude: A029935, A069097, A092843 (diagonal), A209295.
Sums of the form Sum_{k} k^p * T(n, k): A000027 (p=0), A018804 (p=1), A069097 (p=2), A343497 (p=3), A343498 (p=4), A343499 (p=5).

Programs

  • Haskell
    a054523 n k = a054523_tabl !! (n-1) !! (k-1)
    a054523_row n = a054523_tabl !! (n-1)
    a054523_tabl = map (map (\x -> if x == 0 then 0 else a000010 x)) a126988_tabl
    -- Reinhard Zumkeller, Jan 20 2014
    
  • Magma
    A054523:= func< n,k | k eq n select 1 else (n mod k) eq 0 select EulerPhi(Floor(n/k)) else 0 >;
    [A054523(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jun 24 2024
    
  • Maple
    A054523 := proc(n,k) if n mod k = 0 then numtheory[phi](n/k) ; else 0; end if; end proc: # R. J. Mathar, Apr 11 2011
  • Mathematica
    T[n_, k_]:= If[k==n,1,If[Divisible[n, k], EulerPhi[n/k], 0]];
    Table[T[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Dec 15 2017 *)
  • PARI
    for(n=1, 10, for(k=1, n, print1(if(!(n % k), eulerphi(n/k), 0), ", "))) \\ G. C. Greubel, Dec 15 2017
    
  • SageMath
    def A054523(n,k):
        if (k==n): return 1
        elif (n%k)==0: return euler_phi(int(n//k))
        else: return 0
    flatten([[A054523(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jun 24 2024

Formula

Sum_{k=1..n} k * T(n, k) = A018804(n). - Gary W. Adamson, Jan 08 2007
Equals A054525 * A126988 as infinite lower triangular matrices. - Gary W. Adamson, Aug 03 2008
From Werner Schulte, Sep 06 2020: (Start)
Sum_{k=1..n} T(n,k) * A000010(k) = A029935(n) for n > 0.
Sum_{k=1..n} k^2 * T(n,k) = A069097(n) for n > 0. (End)
From G. C. Greubel, Jun 24 2024: (Start)
T(2*n-1, n) = A000007(n-1), n >= 1.
T(2*n, n) = A000012(n), n >= 1.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (1 - (-1)^n)*n/2.
Sum_{k=1..floor(n+1)/2} T(n-k+1, k) = A092843(n+1).
Sum_{k=1..n} (k+1)*T(n, k) = A209295(n).
Sum_{k=1..n} k^3 * T(n, k) = A343497(n).
Sum_{k=1..n} k^4 * T(n, k) = A343498(n).
Sum_{k=1..n} k^5 * T(n, k) = A343499(n). (End)

A332517 a(n) = Sum_{k=1..n} gcd(n,k)^n.

Original entry on oeis.org

1, 5, 29, 274, 3129, 47515, 823549, 16843268, 387459861, 10009769725, 285311670621, 8918311856102, 302875106592265, 11112685048729175, 437893951473411261, 18447025557276459016, 827240261886336764193, 39346558373052524325225, 1978419655660313589123997
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 14 2020

Keywords

Comments

If n is prime, a(n) = n-1 + n^n. - Robert Israel, Feb 16 2020

Crossrefs

Programs

  • Magma
    [&+[Gcd(n,k)^n:k in [1..n]]: n in [1..20]]; // Marius A. Burtea, Feb 15 2020
    
  • Maple
    f:= n -> add(igcd(n,k)^n,k=1..n):
    map(f, [$1..30]); # Robert Israel, Feb 16 2020
  • Mathematica
    Table[Sum[GCD[n, k]^n, {k, 1, n}], {n, 1, 19}]
    Table[Sum[EulerPhi[n/d] d^n, {d, Divisors[n]}], {n, 1, 19}]
    Table[Sum[MoebiusMu[n/d] d DivisorSigma[n - 1, d], {d, Divisors[n]}], {n, 1, 19}]
  • PARI
    a(n) = sum(k=1, n, gcd(n, k)^n); \\ Michel Marcus, Feb 14 2020
    
  • Python
    from sympy import totient, divisors
    def A332517(n):
        return sum(totient(d)*(n//d)**n for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020

Formula

a(n) = Sum_{d|n} phi(n/d) * d^n.
a(n) = Sum_{d|n} mu(n/d) * d * sigma_(n-1)(d).
a(n) ~ n^n.
From Richard L. Ollerton, May 09 2021: (Start)
a(n) = Sum_{k=1..n} (n/gcd(n,k))^n*phi(gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} mu(n/gcd(n,k))*gcd(n,k)*sigma_(n-1)(gcd(n,k))/phi(n/gcd(n,k)). (End)

A343497 a(n) = Sum_{k=1..n} gcd(k, n)^3.

Original entry on oeis.org

1, 9, 29, 74, 129, 261, 349, 596, 789, 1161, 1341, 2146, 2209, 3141, 3741, 4776, 4929, 7101, 6877, 9546, 10121, 12069, 12189, 17284, 16145, 19881, 21321, 25826, 24417, 33669, 29821, 38224, 38889, 44361, 45021, 58386, 50689, 61893, 64061, 76884, 68961, 91089, 79549, 99234, 101781
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Crossrefs

Programs

  • Magma
    A343497:= func< n | (&+[d^3*EulerPhi(Floor(n/d)): d in Divisors(n)]) >;
    [A343497(n): n in [1..50]]; // G. C. Greubel, Jun 24 2024
    
  • Maple
    with(numtheory):
    seq(add(phi(n/d) * d^3, d in divisors(n)), n = 1..50); # Peter Bala, Jan 20 2024
  • Mathematica
    a[n_] := Sum[GCD[k, n]^3, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
    f[p_, e_] := p^(e - 1)*((p^2 + p + 1)*p^(2*e) - 1)/(p + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
    A343497[n_]:= DivisorSum[n, #^3*EulerPhi[n/#] &]; Table[A343497[n], {n, 50}] (* G. C. Greubel, Jun 24 2024 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^3);
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*d^3);
    
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 2));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+4*x^k+x^(2*k))/(1-x^k)^4))
    
  • SageMath
    def A343497(n): return sum(k^3*euler_phi(n/k) for k in (1..n) if (k).divides(n))
    [A343497(n) for n in range(1,51)] # G. C. Greubel, Jun 24 2024

Formula

a(n) = Sum_{d|n} phi(n/d) * d^3.
a(n) = Sum_{d|n} mu(n/d) * d * sigma_2(d).
G.f.: Sum_{k >= 1} phi(k) * x^k * (1 + 4*x^k + x^(2*k))/(1 - x^k)^4.
Dirichlet g.f.: zeta(s-1) * zeta(s-3) / zeta(s). - Ilya Gutkovskiy, Apr 18 2021
Sum_{k=1..n} a(k) ~ 45*zeta(3)*n^4 / (2*Pi^4). - Vaclav Kotesovec, May 20 2021
Multiplicative with a(p^e) = p^(e-1)*((p^2+p+1)*p^(2*e) - 1)/(p+1). - Amiram Eldar, Nov 22 2022
a(n) = Sum_{1 <= i, j, k <= n} gcd(i, j, k, n) = Sum_{d divides n} d * J_3(n/d), where the Jordan totient function J_3(n) = A059376(n). - Peter Bala, Jan 20 2024

A343498 a(n) = Sum_{k=1..n} gcd(k, n)^4.

Original entry on oeis.org

1, 17, 83, 274, 629, 1411, 2407, 4388, 6729, 10693, 14651, 22742, 28573, 40919, 52207, 70216, 83537, 114393, 130339, 172346, 199781, 249067, 279863, 364204, 393145, 485741, 545067, 659518, 707309, 887519, 923551, 1123472, 1216033, 1420129, 1514003, 1843746, 1874197
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Crossrefs

Programs

  • Magma
    A343498:= func< n | (&+[d^4*EulerPhi(Floor(n/d)): d in Divisors(n)]) >;
    [A343498(n): n in [1..50]]; // G. C. Greubel, Jun 24 2024
    
  • Mathematica
    a[n_] := Sum[GCD[k, n]^4, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
    f[p_, e_] := p^(e-1)*(p^(3*e+4) - p^(3*e) - p + 1)/(p^3-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^4);
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*d^4);
    
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 3));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+11*x^k+11*x^(2*k)+x^(3*k))/(1-x^k)^5))
    
  • SageMath
    def A343498(n): return sum(k^4*euler_phi(n/k) for k in (1..n) if (k).divides(n))
    [A343498(n) for n in range(1,51)] # G. C. Greubel, Jun 24 2024

Formula

a(n) = Sum_{d|n} phi(n/d) * d^4.
a(n) = Sum_{d|n} mu(n/d) * d * sigma_3(d).
G.f.: Sum_{k >= 1} phi(k) * x^k * (1 + 11*x^k + 11*x^(2*k) + x^(3*k))/(1 - x^k)^5.
Dirichlet g.f.: zeta(s-1) * zeta(s-4) / zeta(s). - Ilya Gutkovskiy, Apr 18 2021
Sum_{k=1..n} a(k) ~ Pi^4 * n^5 / (450*zeta(5)). - Vaclav Kotesovec, May 20 2021
Multiplicative with a(p^e) = p^(e-1)*(p^(3*e+4) - p^(3*e) - p + 1)/(p^3-1). - Amiram Eldar, Nov 22 2022
a(n) = Sum_{1 <= i, j, k, l <= n} gcd(i, j, k, l, n) = Sum_{d divides n} d * J_4(n/d), where the Jordan totient function J_4(n) = A059377(n). - Peter Bala, Jan 18 2024

A343510 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{j=1..n} gcd(j, n)^k.

Original entry on oeis.org

1, 1, 3, 1, 5, 5, 1, 9, 11, 8, 1, 17, 29, 22, 9, 1, 33, 83, 74, 29, 15, 1, 65, 245, 274, 129, 55, 13, 1, 129, 731, 1058, 629, 261, 55, 20, 1, 257, 2189, 4162, 3129, 1411, 349, 92, 21, 1, 513, 6563, 16514, 15629, 8085, 2407, 596, 105, 27, 1, 1025, 19685, 65794, 78129, 47515, 16813, 4388, 789, 145, 21
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Examples

			G.f. of column 3: Sum_{i>=1} phi(i) * (x^i + 4*x^(2*i) + x^(3*i))/(1 - x^i)^4.
Square array begins:
   1,  1,   1,    1,     1,      1,      1, ...
   3,  5,   9,   17,    33,     65,    129, ...
   5, 11,  29,   83,   245,    731,   2189, ...
   8, 22,  74,  274,  1058,   4162,  16514, ...
   9, 29, 129,  629,  3129,  15629,  78129, ...
  15, 55, 261, 1411,  8085,  47515, 282381, ...
  13, 55, 349, 2407, 16813, 117655, 823549, ...
		

Crossrefs

Columns k=1..7 give A018804, A069097, A343497, A343498, A343499, A343508, A343509.
T(n-2,n) gives A342432.
T(n-1,n) gives A342433.
T(n,n) gives A332517.
T(n,n+1) gives A321294.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, EulerPhi[n/#] * #^k &]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 18 2021 *)
  • PARI
    T(n, k) = sum(j=1, n, gcd(j, n)^k);
    
  • PARI
    T(n, k) = sumdiv(n, d, eulerphi(n/d)*d^k);
    
  • PARI
    T(n, k) = sumdiv(n, d, moebius(n/d)*d*sigma(d, k-1));

Formula

G.f. of column k: Sum_{i>=1} phi(i) * ( Sum_{j=1..k} A008292(k, j) * x^(i*j) )/(1 - x^i)^(k+1).
T(n,k) = Sum_{d|n} phi(n/d) * d^k.
T(n,k) = Sum_{d|n} mu(n/d) * d * sigma_{k-1}(d).
Dirichlet g.f. of column k: zeta(s-1) * zeta(s-k) / zeta(s). - Ilya Gutkovskiy, Apr 18 2021
T(n,k) = Sum_{j=1..n} (n/gcd(n,j))^k*phi(gcd(n,j))/phi(n/gcd(n,j)). - Richard L. Ollerton, May 10 2021
T(n,k) = Sum_{1 <= j_1, j_2, ..., j_k <= n} gcd(j_1, j_2, ..., j_k)^2 = Sum_{d divides n} d * J_k(n/d), where J_k(n) denotes the k-th Jordan totient function. - Peter Bala, Jan 29 2024

A283123 a(n) = sigma(9*n).

Original entry on oeis.org

13, 39, 40, 91, 78, 120, 104, 195, 121, 234, 156, 280, 182, 312, 240, 403, 234, 363, 260, 546, 320, 468, 312, 600, 403, 546, 364, 728, 390, 720, 416, 819, 480, 702, 624, 847, 494, 780, 560, 1170, 546, 960, 572, 1092, 726, 936, 624, 1240, 741, 1209
Offset: 1

Views

Author

Seiichi Manyama, Mar 01 2017

Keywords

Comments

In general, for k>=1, Sum_{j=1..n} sigma(j*k) ~ A069097(k) * Pi^2 * n^2 / (12*k). - Vaclav Kotesovec, May 11 2024

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), A193553 (k=4), A283118 (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), this sequence (k=9).
Cf. A008591.

Programs

Formula

a(n) = A000203(9*n).
Sum_{k=1..n} a(k) = (35*Pi^2/36) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022

A078430 Sum of gcd(k^2,n) for 1 <= k <= n.

Original entry on oeis.org

1, 3, 5, 10, 9, 15, 13, 28, 33, 27, 21, 50, 25, 39, 45, 88, 33, 99, 37, 90, 65, 63, 45, 140, 145, 75, 153, 130, 57, 135, 61, 240, 105, 99, 117, 330, 73, 111, 125, 252, 81, 195, 85, 210, 297, 135, 93, 440, 385, 435, 165, 250, 105, 459, 189, 364, 185, 171, 117, 450, 121
Offset: 1

Views

Author

Vladeta Jovovic, Dec 30 2002

Keywords

Comments

a(n) is the number of non-congruent solutions to x^2*y = 0 mod n. - Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 17 2003
Row sums of triangle A245717. - Reinhard Zumkeller, Jul 30 2014

Crossrefs

Programs

  • Haskell
    a078430 = sum . a245717_row  -- Reinhard Zumkeller, Jul 30 2014
    
  • Mathematica
    Table[Sum[GCD[k^2,n],{k,n}],{n,70}] (* Harvey P. Dale, Sep 29 2014 *)
    f[p_, e_] := If[EvenQ[e], p^(3*e/2) + p^(3*e/2 - 1), 2*p^((3*e - 1)/2)] - p^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
  • PARI
    a(n) = sum(k=1,n, gcd(k^2, n)); \\ Michel Marcus, Aug 03 2016

Formula

a(n) is multiplicative. G.f. for a(p^n), p a prime, is given by (1+(p-1)*x-p^2*x^2)/(1-p*x)/(1-p^3*x^2).
a(n) = n*Sum_{d|n} phi(d)*N(d)/d, where phi is Euler's totient function A000010 and N(n) is sequence A000188. - Laszlo Toth, Apr 15 2012
Multiplicative with a(p^e) = p^(3*e/2) + p^(3*e/2-1) - p^(e-1) if e is even, and 2*p^((3*e-1)/2) - p^(e-1) if e is odd. - Amiram Eldar, Apr 28 2023

A343499 a(n) = Sum_{k=1..n} gcd(k, n)^5.

Original entry on oeis.org

1, 33, 245, 1058, 3129, 8085, 16813, 33860, 59541, 103257, 161061, 259210, 371305, 554829, 766605, 1083528, 1419873, 1964853, 2476117, 3310482, 4119185, 5315013, 6436365, 8295700, 9778145, 12253065, 14468481, 17788154, 20511177, 25297965, 28629181, 34672912, 39459945, 46855809
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Crossrefs

Programs

  • Magma
    A343499:= func< n | (&+[d^5*EulerPhi(Floor(n/d)): d in Divisors(n)]) >;
    [A343499(n): n in [1..50]]; // G. C. Greubel, Jun 24 2024
    
  • Mathematica
    a[n_] := Sum[GCD[k, n]^5, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
    f[p_, e_] := p^(e-1)*(p^(4*e+5) - p^(4*e) - p + 1)/(p^4-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^5);
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*d^5);
    
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 4));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+26*x^k+66*x^(2*k)+26*x^(3*k)+x^(4*k))/(1-x^k)^6))
    
  • SageMath
    def A343499(n): return sum(k^5*euler_phi(n/k) for k in (1..n) if (k).divides(n))
    [A343499(n) for n in range(1,51)] # G. C. Greubel, Jun 24 2024

Formula

a(n) = Sum_{d|n} phi(n/d) * d^5.
a(n) = Sum_{d|n} mu(n/d) * d * sigma_4(d).
G.f.: Sum_{k >= 1} phi(k) * x^k * (1 + 26*x^k + 66*x^(2*k) + 26*x^(3*k) + x^(4*k))/(1 - x^k)^6.
Dirichlet g.f.: zeta(s-1) * zeta(s-5) / zeta(s). - Ilya Gutkovskiy, Apr 18 2021
Sum_{k=1..n} a(k) ~ 315*zeta(5)*n^6 / (2*Pi^6). - Vaclav Kotesovec, May 20 2021
Multiplicative with a(p^e) = p^(e-1)*(p^(4*e+5) - p^(4*e) - p + 1)/(p^4-1). - Amiram Eldar, Nov 22 2022
a(n) = Sum_{1 <= i_1, ..., i_5 <= n} gcd(i_1, ..., i_5, n) = Sum_{d divides n} d * J_5(n/d), where the Jordan totient function J_5(n) = A059378(n). - Peter Bala, Jan 29 2024

A368743 a(n) = Sum_{1 <= i, j <= n} gcd(i, j, n)^3.

Original entry on oeis.org

1, 11, 35, 100, 149, 385, 391, 848, 1017, 1639, 1451, 3500, 2365, 4301, 5215, 6976, 5201, 11187, 7219, 14900, 13685, 15961, 12695, 29680, 19225, 26015, 28107, 39100, 25229, 57365, 30751, 56576, 50785, 57211, 58259, 101700, 52021, 79409, 82775, 126352
Offset: 1

Views

Author

Peter Bala, Jan 20 2024

Keywords

Crossrefs

Programs

  • Maple
    seq( add(add(igcd(i, j, n)^3, i = 1..n), j = 1..n), n = 1..50);
    # faster program for large n
    with(numtheory):
    A007434 := proc(n) add(d^2*mobius(n/d), d in divisors(n)) end proc:
    seq( add(d^3*A007434(n/d), d in divisors(n)), n = 1..500);
  • Mathematica
    f[p_, e_] := p^(3*e - 2)*(p^2 + p + 1) - p^(2*e - 2)*(p + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 29 2024 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; p^(3*e - 2)*(p^2 + p + 1) - p^(2*e - 2)*(p + 1));} \\ Amiram Eldar, Jan 29 2024
    
  • Python
    from math import prod
    from sympy import factorint
    def A368743(n): return prod(p**(e-1<<1)*(p**e*(p*(q:=p+1)+1)-q) for p, e in factorint(n).items()) # Chai Wah Wu, Jan 29 2024

Formula

a(n) = Sum_{1 <= i, j, k <= n} gcd(i, j, k, n)^2.
a(n) = Sum_{d divides n} d^3 * J_2(n/d) = Sum_{d divides n} d^2 * J_3(n/d), where the Jordan totient functions J_2(n) = A007434(n) and J_3(n) = A059376(n).
Dirichlet g.f.: zeta(s-2) * zeta(s-3)/zeta(s).
a(n) is a multiplicative function: for prime p, a(p^k) = p^(3*k-2)*(p^2 + p + 1) - p^(2*k-2)*(p + 1).
Sum_{k=1..n} a(k) ~ c * n^4, where c = 15/(4*Pi^2) = 0.379954... . - Amiram Eldar, Jan 29 2024
a(n) = Sum_{d divides n} mobius(n/d) * d^2 * sigma(d). - Peter Bala, Jan 29 2024
Showing 1-10 of 29 results. Next