A343497
a(n) = Sum_{k=1..n} gcd(k, n)^3.
Original entry on oeis.org
1, 9, 29, 74, 129, 261, 349, 596, 789, 1161, 1341, 2146, 2209, 3141, 3741, 4776, 4929, 7101, 6877, 9546, 10121, 12069, 12189, 17284, 16145, 19881, 21321, 25826, 24417, 33669, 29821, 38224, 38889, 44361, 45021, 58386, 50689, 61893, 64061, 76884, 68961, 91089, 79549, 99234, 101781
Offset: 1
Cf.
A000010,
A001157 (sigma_2(n)),
A018804,
A054610,
A069097,
A309323,
A332517,
A342423,
A342433,
A343498,
A343499,
A343513.
-
A343497:= func< n | (&+[d^3*EulerPhi(Floor(n/d)): d in Divisors(n)]) >;
[A343497(n): n in [1..50]]; // G. C. Greubel, Jun 24 2024
-
with(numtheory):
seq(add(phi(n/d) * d^3, d in divisors(n)), n = 1..50); # Peter Bala, Jan 20 2024
-
a[n_] := Sum[GCD[k, n]^3, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
f[p_, e_] := p^(e - 1)*((p^2 + p + 1)*p^(2*e) - 1)/(p + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
A343497[n_]:= DivisorSum[n, #^3*EulerPhi[n/#] &]; Table[A343497[n], {n, 50}] (* G. C. Greubel, Jun 24 2024 *)
-
a(n) = sum(k=1, n, gcd(k, n)^3);
-
a(n) = sumdiv(n, d, eulerphi(n/d)*d^3);
-
a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 2));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+4*x^k+x^(2*k))/(1-x^k)^4))
-
def A343497(n): return sum(k^3*euler_phi(n/k) for k in (1..n) if (k).divides(n))
[A343497(n) for n in range(1,51)] # G. C. Greubel, Jun 24 2024
A343498
a(n) = Sum_{k=1..n} gcd(k, n)^4.
Original entry on oeis.org
1, 17, 83, 274, 629, 1411, 2407, 4388, 6729, 10693, 14651, 22742, 28573, 40919, 52207, 70216, 83537, 114393, 130339, 172346, 199781, 249067, 279863, 364204, 393145, 485741, 545067, 659518, 707309, 887519, 923551, 1123472, 1216033, 1420129, 1514003, 1843746, 1874197
Offset: 1
Cf.
A000010,
A001158 (sigma_3(n)),
A018804,
A054611,
A069097,
A332517,
A342423,
A342433,
A343497,
A343499,
A343514.
-
A343498:= func< n | (&+[d^4*EulerPhi(Floor(n/d)): d in Divisors(n)]) >;
[A343498(n): n in [1..50]]; // G. C. Greubel, Jun 24 2024
-
a[n_] := Sum[GCD[k, n]^4, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
f[p_, e_] := p^(e-1)*(p^(3*e+4) - p^(3*e) - p + 1)/(p^3-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
-
a(n) = sum(k=1, n, gcd(k, n)^4);
-
a(n) = sumdiv(n, d, eulerphi(n/d)*d^4);
-
a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 3));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+11*x^k+11*x^(2*k)+x^(3*k))/(1-x^k)^5))
-
def A343498(n): return sum(k^4*euler_phi(n/k) for k in (1..n) if (k).divides(n))
[A343498(n) for n in range(1,51)] # G. C. Greubel, Jun 24 2024
A343510
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{j=1..n} gcd(j, n)^k.
Original entry on oeis.org
1, 1, 3, 1, 5, 5, 1, 9, 11, 8, 1, 17, 29, 22, 9, 1, 33, 83, 74, 29, 15, 1, 65, 245, 274, 129, 55, 13, 1, 129, 731, 1058, 629, 261, 55, 20, 1, 257, 2189, 4162, 3129, 1411, 349, 92, 21, 1, 513, 6563, 16514, 15629, 8085, 2407, 596, 105, 27, 1, 1025, 19685, 65794, 78129, 47515, 16813, 4388, 789, 145, 21
Offset: 1
G.f. of column 3: Sum_{i>=1} phi(i) * (x^i + 4*x^(2*i) + x^(3*i))/(1 - x^i)^4.
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
3, 5, 9, 17, 33, 65, 129, ...
5, 11, 29, 83, 245, 731, 2189, ...
8, 22, 74, 274, 1058, 4162, 16514, ...
9, 29, 129, 629, 3129, 15629, 78129, ...
15, 55, 261, 1411, 8085, 47515, 282381, ...
13, 55, 349, 2407, 16813, 117655, 823549, ...
-
T[n_, k_] := DivisorSum[n, EulerPhi[n/#] * #^k &]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 18 2021 *)
-
T(n, k) = sum(j=1, n, gcd(j, n)^k);
-
T(n, k) = sumdiv(n, d, eulerphi(n/d)*d^k);
-
T(n, k) = sumdiv(n, d, moebius(n/d)*d*sigma(d, k-1));
A226561
a(n) = Sum_{d|n} d^n * phi(d), where phi(n) is the Euler totient function A000010(n).
Original entry on oeis.org
1, 5, 55, 529, 12501, 94835, 4941259, 67240193, 2324562301, 40039063525, 2853116706111, 35668789979107, 3634501279107037, 66676110291801575, 3503151245145885315, 147575078498173255681, 13235844190181388226833, 236079349222711695887225, 35611553801885644604231623
Offset: 1
L.g.f.: L(x) = x + 5*x^2/2 + 55*x^3/3 + 529*x^4/4 + 12501*x^5/5 + 94835*x^6/6 + ...
where
exp(L(x)) = 1 + x + 3*x^2 + 21*x^3 + 155*x^4 + 2691*x^5 + 18924*x^6 + 732230*x^7 + 9223166*x^8 + ... + A226560(n)*x^n + ...
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[EulerPhi(k)*(k*x)^k/(1-(k*x)^k): k in [1..2*m]]) )); // G. C. Greubel, Nov 07 2018
-
f:= n -> add(d^n * numtheory:-phi(d), d = numtheory:-divisors(n)):
map(f, [$1..40]); # Robert Israel, Jun 16 2017
-
Table[DivisorSum[n, #*EulerPhi[#^n] &], {n, 1, 30}] (* or *) With[{nmax = 30}, Rest[CoefficientList[Series[Sum[EulerPhi[k]*(k*x)^k/(1 - (k*x)^k), {k, 1, 2*nmax}], {x, 0, nmax}], x]]] (* G. C. Greubel, Nov 07 2018 *)
-
{a(n)=sumdiv(n, d, d^n*eulerphi(d))}
for(n=1,30,print1(a(n),", "))
-
a(n) = sum(k=1, n, (n/gcd(k, n))^n); \\ Seiichi Manyama, Mar 11 2021
-
from sympy import totient, divisors
def A226561(n):
return sum(totient(d)*d**n for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020
A342423
a(n) = Sum_{k=1..n} gcd(k,n)^gcd(k,n).
Original entry on oeis.org
1, 5, 29, 262, 3129, 46693, 823549, 16777484, 387420549, 10000003145, 285311670621, 8916100495490, 302875106592265, 11112006826381589, 437893890380865741, 18446744073726329368, 827240261886336764193, 39346408075296925089309
Offset: 1
-
a[n_] := Sum[GCD[k, n]^GCD[k, n], {k, 1, n}]; Array[a, 18] (* Amiram Eldar, Mar 11 2021 *)
-
a(n) = sum(k=1, n, gcd(k, n)^gcd(k, n));
-
a(n) = sumdiv(n, d, eulerphi(n/d)*d^d);
A342433
a(n) = Sum_{k=1..n} gcd(k,n)^(n-1).
Original entry on oeis.org
1, 3, 11, 74, 629, 8085, 117655, 2113796, 43059849, 1001955177, 25937424611, 743379914746, 23298085122493, 793811662313709, 29192938251553759, 1152956691126550536, 48661191875666868497, 2185928270773974154773
Offset: 1
-
a[n_] := Sum[GCD[k, n]^(n - 1), {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Mar 12 2021 *)
-
a(n) = sum(k=1, n, gcd(k, n)^(n-1));
-
a(n) = sumdiv(n, d, eulerphi(n/d)*d^(n-1));
-
a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, n-2));
A343499
a(n) = Sum_{k=1..n} gcd(k, n)^5.
Original entry on oeis.org
1, 33, 245, 1058, 3129, 8085, 16813, 33860, 59541, 103257, 161061, 259210, 371305, 554829, 766605, 1083528, 1419873, 1964853, 2476117, 3310482, 4119185, 5315013, 6436365, 8295700, 9778145, 12253065, 14468481, 17788154, 20511177, 25297965, 28629181, 34672912, 39459945, 46855809
Offset: 1
Cf.
A000010,
A001159 (sigma_4(n)),
A018804,
A054612,
A059378,
A069097,
A332517,
A342423,
A342433,
A343497,
A343498,
A344524.
-
A343499:= func< n | (&+[d^5*EulerPhi(Floor(n/d)): d in Divisors(n)]) >;
[A343499(n): n in [1..50]]; // G. C. Greubel, Jun 24 2024
-
a[n_] := Sum[GCD[k, n]^5, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
f[p_, e_] := p^(e-1)*(p^(4*e+5) - p^(4*e) - p + 1)/(p^4-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
-
a(n) = sum(k=1, n, gcd(k, n)^5);
-
a(n) = sumdiv(n, d, eulerphi(n/d)*d^5);
-
a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 4));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+26*x^k+66*x^(2*k)+26*x^(3*k)+x^(4*k))/(1-x^k)^6))
-
def A343499(n): return sum(k^5*euler_phi(n/k) for k in (1..n) if (k).divides(n))
[A343499(n) for n in range(1,51)] # G. C. Greubel, Jun 24 2024
A344223
a(n) = Sum_{k=1..n} tau(gcd(k,n)^n), where tau(n) is the number of divisors of n.
Original entry on oeis.org
1, 4, 6, 16, 10, 72, 14, 64, 45, 180, 22, 600, 26, 336, 360, 256, 34, 1620, 38, 1600, 672, 792, 46, 4752, 175, 1092, 378, 3080, 58, 36960, 62, 1024, 1584, 1836, 1680, 17136, 74, 2280, 2184, 12960, 82, 97020, 86, 7480, 9450, 3312, 94, 37536, 441, 16900, 3672, 10400, 106, 40824, 3960, 25200
Offset: 1
-
Table[Sum[DivisorSigma[0,GCD[k,n]^n],{k,n}],{n,100}] (* Giorgos Kalogeropoulos, May 13 2021 *)
-
a(n) = sum(k=1, n, numdiv(gcd(k, n)^n));
-
a(n) = sumdiv(n, d, eulerphi(n/d)*numdiv(d^n));
-
a(n) = n*sumdiv(n, d, n^omega(d)/d);
A343517
a(n) = Sum_{1 <= x_1 <= x_2 <= ... <= x_n <= n} gcd(x_1, x_2, ... , x_n, n).
Original entry on oeis.org
1, 4, 12, 42, 130, 506, 1722, 6622, 24426, 93427, 352726, 1359388, 5200312, 20097156, 77567064, 300787366, 1166803126, 4539197723, 17672631918, 68933307843, 269129530770, 1052113994340, 4116715363822, 16124224571368, 63205303313900, 247961973949536
Offset: 1
-
a[n_] := DivisorSum[n, EulerPhi[n/#] * Binomial[n + # - 1, n] &]; Array[a, 25] (* Amiram Eldar, Apr 18 2021 *)
-
a(n) = sumdiv(n, d, eulerphi(n/d)*binomial(d+n-1, n));
A342432
a(n) = Sum_{k=1..n} gcd(k,n)^(n-2).
Original entry on oeis.org
1, 2, 5, 22, 129, 1411, 16813, 266372, 4787349, 100391653, 2357947701, 61980047702, 1792160394049, 56707753687079, 1946197516142925, 72061992621375496, 2862423051509815809, 121441389759089405193, 5480386857784802185957
Offset: 1
-
a[n_] := Sum[GCD[k, n]^(n - 2), {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Mar 12 2021 *)
-
a(n) = sum(k=1, n, gcd(k, n)^(n-2));
-
a(n) = sumdiv(n, d, eulerphi(n/d)*d^(n-2));
-
a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, n-3));
Showing 1-10 of 15 results.
Comments