A343497
a(n) = Sum_{k=1..n} gcd(k, n)^3.
Original entry on oeis.org
1, 9, 29, 74, 129, 261, 349, 596, 789, 1161, 1341, 2146, 2209, 3141, 3741, 4776, 4929, 7101, 6877, 9546, 10121, 12069, 12189, 17284, 16145, 19881, 21321, 25826, 24417, 33669, 29821, 38224, 38889, 44361, 45021, 58386, 50689, 61893, 64061, 76884, 68961, 91089, 79549, 99234, 101781
Offset: 1
Cf.
A000010,
A001157 (sigma_2(n)),
A018804,
A054610,
A069097,
A309323,
A332517,
A342423,
A342433,
A343498,
A343499,
A343513.
-
A343497:= func< n | (&+[d^3*EulerPhi(Floor(n/d)): d in Divisors(n)]) >;
[A343497(n): n in [1..50]]; // G. C. Greubel, Jun 24 2024
-
with(numtheory):
seq(add(phi(n/d) * d^3, d in divisors(n)), n = 1..50); # Peter Bala, Jan 20 2024
-
a[n_] := Sum[GCD[k, n]^3, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
f[p_, e_] := p^(e - 1)*((p^2 + p + 1)*p^(2*e) - 1)/(p + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
A343497[n_]:= DivisorSum[n, #^3*EulerPhi[n/#] &]; Table[A343497[n], {n, 50}] (* G. C. Greubel, Jun 24 2024 *)
-
a(n) = sum(k=1, n, gcd(k, n)^3);
-
a(n) = sumdiv(n, d, eulerphi(n/d)*d^3);
-
a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 2));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+4*x^k+x^(2*k))/(1-x^k)^4))
-
def A343497(n): return sum(k^3*euler_phi(n/k) for k in (1..n) if (k).divides(n))
[A343497(n) for n in range(1,51)] # G. C. Greubel, Jun 24 2024
A343498
a(n) = Sum_{k=1..n} gcd(k, n)^4.
Original entry on oeis.org
1, 17, 83, 274, 629, 1411, 2407, 4388, 6729, 10693, 14651, 22742, 28573, 40919, 52207, 70216, 83537, 114393, 130339, 172346, 199781, 249067, 279863, 364204, 393145, 485741, 545067, 659518, 707309, 887519, 923551, 1123472, 1216033, 1420129, 1514003, 1843746, 1874197
Offset: 1
Cf.
A000010,
A001158 (sigma_3(n)),
A018804,
A054611,
A069097,
A332517,
A342423,
A342433,
A343497,
A343499,
A343514.
-
A343498:= func< n | (&+[d^4*EulerPhi(Floor(n/d)): d in Divisors(n)]) >;
[A343498(n): n in [1..50]]; // G. C. Greubel, Jun 24 2024
-
a[n_] := Sum[GCD[k, n]^4, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
f[p_, e_] := p^(e-1)*(p^(3*e+4) - p^(3*e) - p + 1)/(p^3-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
-
a(n) = sum(k=1, n, gcd(k, n)^4);
-
a(n) = sumdiv(n, d, eulerphi(n/d)*d^4);
-
a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 3));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+11*x^k+11*x^(2*k)+x^(3*k))/(1-x^k)^5))
-
def A343498(n): return sum(k^4*euler_phi(n/k) for k in (1..n) if (k).divides(n))
[A343498(n) for n in range(1,51)] # G. C. Greubel, Jun 24 2024
A343510
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{j=1..n} gcd(j, n)^k.
Original entry on oeis.org
1, 1, 3, 1, 5, 5, 1, 9, 11, 8, 1, 17, 29, 22, 9, 1, 33, 83, 74, 29, 15, 1, 65, 245, 274, 129, 55, 13, 1, 129, 731, 1058, 629, 261, 55, 20, 1, 257, 2189, 4162, 3129, 1411, 349, 92, 21, 1, 513, 6563, 16514, 15629, 8085, 2407, 596, 105, 27, 1, 1025, 19685, 65794, 78129, 47515, 16813, 4388, 789, 145, 21
Offset: 1
G.f. of column 3: Sum_{i>=1} phi(i) * (x^i + 4*x^(2*i) + x^(3*i))/(1 - x^i)^4.
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
3, 5, 9, 17, 33, 65, 129, ...
5, 11, 29, 83, 245, 731, 2189, ...
8, 22, 74, 274, 1058, 4162, 16514, ...
9, 29, 129, 629, 3129, 15629, 78129, ...
15, 55, 261, 1411, 8085, 47515, 282381, ...
13, 55, 349, 2407, 16813, 117655, 823549, ...
-
T[n_, k_] := DivisorSum[n, EulerPhi[n/#] * #^k &]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 18 2021 *)
-
T(n, k) = sum(j=1, n, gcd(j, n)^k);
-
T(n, k) = sumdiv(n, d, eulerphi(n/d)*d^k);
-
T(n, k) = sumdiv(n, d, moebius(n/d)*d*sigma(d, k-1));
A343499
a(n) = Sum_{k=1..n} gcd(k, n)^5.
Original entry on oeis.org
1, 33, 245, 1058, 3129, 8085, 16813, 33860, 59541, 103257, 161061, 259210, 371305, 554829, 766605, 1083528, 1419873, 1964853, 2476117, 3310482, 4119185, 5315013, 6436365, 8295700, 9778145, 12253065, 14468481, 17788154, 20511177, 25297965, 28629181, 34672912, 39459945, 46855809
Offset: 1
Cf.
A000010,
A001159 (sigma_4(n)),
A018804,
A054612,
A059378,
A069097,
A332517,
A342423,
A342433,
A343497,
A343498,
A344524.
-
A343499:= func< n | (&+[d^5*EulerPhi(Floor(n/d)): d in Divisors(n)]) >;
[A343499(n): n in [1..50]]; // G. C. Greubel, Jun 24 2024
-
a[n_] := Sum[GCD[k, n]^5, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
f[p_, e_] := p^(e-1)*(p^(4*e+5) - p^(4*e) - p + 1)/(p^4-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
-
a(n) = sum(k=1, n, gcd(k, n)^5);
-
a(n) = sumdiv(n, d, eulerphi(n/d)*d^5);
-
a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 4));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+26*x^k+66*x^(2*k)+26*x^(3*k)+x^(4*k))/(1-x^k)^6))
-
def A343499(n): return sum(k^5*euler_phi(n/k) for k in (1..n) if (k).divides(n))
[A343499(n) for n in range(1,51)] # G. C. Greubel, Jun 24 2024
A342432
a(n) = Sum_{k=1..n} gcd(k,n)^(n-2).
Original entry on oeis.org
1, 2, 5, 22, 129, 1411, 16813, 266372, 4787349, 100391653, 2357947701, 61980047702, 1792160394049, 56707753687079, 1946197516142925, 72061992621375496, 2862423051509815809, 121441389759089405193, 5480386857784802185957
Offset: 1
-
a[n_] := Sum[GCD[k, n]^(n - 2), {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Mar 12 2021 *)
-
a(n) = sum(k=1, n, gcd(k, n)^(n-2));
-
a(n) = sumdiv(n, d, eulerphi(n/d)*d^(n-2));
-
a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, n-3));
A321294
a(n) = Sum_{d|n} mu(n/d)*d*sigma_n(d).
Original entry on oeis.org
1, 9, 83, 1058, 15629, 282381, 5764807, 134480900, 3486902505, 100048836321, 3138428376731, 107006403495850, 3937376385699301, 155572843119518781, 6568408661060858767, 295150157013526773768, 14063084452067724991025, 708236697425777157039381
Offset: 1
-
Table[Sum[MoebiusMu[n/d] d DivisorSigma[n, d], {d, Divisors[n]}], {n, 18}]
Table[Sum[EulerPhi[n/d] d^(n + 1), {d, Divisors[n]}], {n, 18}]
Table[Sum[GCD[n, k]^(n + 1), {k, n}], {n, 18}]
-
a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, n)); \\ Michel Marcus, Nov 03 2018
-
from sympy import totient, divisors
def A321294(n):
return sum(totient(d)*(n//d)**(n+1) for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020
A342370
a(n) = Sum_{k=1..n} gcd(k,n)^(k-1).
Original entry on oeis.org
1, 3, 11, 68, 629, 7797, 117655, 2097254, 43046979, 1000000799, 25937424611, 743008402000, 23298085122493, 793714773374529, 29192926027528343, 1152921504613147242, 48661191875666868497, 2185911559739107208115, 104127350297911241532859, 5242880000000008181608132
Offset: 1
-
a[n_] := Sum[GCD[k, n]^(k - 1), {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Mar 13 2021 *)
-
a(n) = sum(k=1, n, gcd(k, n)^(k-1));
Showing 1-7 of 7 results.