cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A054523 Triangle read by rows: T(n,k) = phi(n/k) if k divides n, T(n,k)=0 otherwise (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 2, 1, 0, 1, 4, 0, 0, 0, 1, 2, 2, 1, 0, 0, 1, 6, 0, 0, 0, 0, 0, 1, 4, 2, 0, 1, 0, 0, 0, 1, 6, 0, 2, 0, 0, 0, 0, 0, 1, 4, 4, 0, 0, 1, 0, 0, 0, 0, 1, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 1, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 6
Offset: 1

Views

Author

N. J. A. Sloane, Apr 09 2000

Keywords

Comments

From Gary W. Adamson, Jan 08 2007: (Start)
Let H be this lower triangular matrix. Then:
H * [1, 2, 3, ...] = 1, 3, 5, 8, 9, 15, ... = A018804,
H * sigma(n) = A038040 = d(n) * n = 1, 4, 6, 12, 10, ... where sigma(n) = A000203,
H * d(n) (A000005) = sigma(n) = A000203,
Row sums are A000027 (corrected by Werner Schulte, Sep 06 2020, see comment of Gary W. Adamson, Aug 03 2008),
H^2 * d(n) = d(n)*n, H^2 = A127192,
H * mu(n) (A008683) = A007431(n) (corrected by Werner Schulte, Sep 06 2020),
H^2 row sums = A018804. (End)
The Möbius inversion principle of Richard Dedekind and Joseph Liouville (1857), cf. "Concrete Mathematics", p. 136, is equivalent to the statement that row sums are the row index n. - Gary W. Adamson, Aug 03 2008
The multivariable row polynomials give n times the cycle index for the cyclic group C_n, called Z(C_n) (see the MathWorld link with the Harary reference): n*Z(C_n) = Sum_{k=1..n} T(n,k)*(y_{n/k})^k, n >= 1. E.g., 6*Z(C_6) = 2*(y_6)^1 + 2*(y_3)^2 + 1*(y_2)^3 + 1*(y_1)^6. - Wolfdieter Lang, May 22 2012
See A102190 (no 0's, rows reversed). - Wolfdieter Lang, May 29 2012
This is the number of permutations in the n-th cyclic group which are the product of k disjoint cycles. - Robert A. Beeler, Aug 09 2013

Examples

			Triangle begins
   1;
   1, 1;
   2, 0, 1;
   2, 1, 0, 1;
   4, 0, 0, 0, 1;
   2, 2, 1, 0, 0, 1;
   6, 0, 0, 0, 0, 0, 1;
   4, 2, 0, 1, 0, 0, 0, 1;
   6, 0, 2, 0, 0, 0, 0, 0, 1;
   4, 4, 0, 0, 1, 0, 0, 0, 0, 1;
  10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
   4, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 1;
		

References

  • Ronald L. Graham, D. E. Knuth, Oren Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., 1994, p. 136.

Crossrefs

Sums incliude: A029935, A069097, A092843 (diagonal), A209295.
Sums of the form Sum_{k} k^p * T(n, k): A000027 (p=0), A018804 (p=1), A069097 (p=2), A343497 (p=3), A343498 (p=4), A343499 (p=5).

Programs

  • Haskell
    a054523 n k = a054523_tabl !! (n-1) !! (k-1)
    a054523_row n = a054523_tabl !! (n-1)
    a054523_tabl = map (map (\x -> if x == 0 then 0 else a000010 x)) a126988_tabl
    -- Reinhard Zumkeller, Jan 20 2014
    
  • Magma
    A054523:= func< n,k | k eq n select 1 else (n mod k) eq 0 select EulerPhi(Floor(n/k)) else 0 >;
    [A054523(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jun 24 2024
    
  • Maple
    A054523 := proc(n,k) if n mod k = 0 then numtheory[phi](n/k) ; else 0; end if; end proc: # R. J. Mathar, Apr 11 2011
  • Mathematica
    T[n_, k_]:= If[k==n,1,If[Divisible[n, k], EulerPhi[n/k], 0]];
    Table[T[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Dec 15 2017 *)
  • PARI
    for(n=1, 10, for(k=1, n, print1(if(!(n % k), eulerphi(n/k), 0), ", "))) \\ G. C. Greubel, Dec 15 2017
    
  • SageMath
    def A054523(n,k):
        if (k==n): return 1
        elif (n%k)==0: return euler_phi(int(n//k))
        else: return 0
    flatten([[A054523(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jun 24 2024

Formula

Sum_{k=1..n} k * T(n, k) = A018804(n). - Gary W. Adamson, Jan 08 2007
Equals A054525 * A126988 as infinite lower triangular matrices. - Gary W. Adamson, Aug 03 2008
From Werner Schulte, Sep 06 2020: (Start)
Sum_{k=1..n} T(n,k) * A000010(k) = A029935(n) for n > 0.
Sum_{k=1..n} k^2 * T(n,k) = A069097(n) for n > 0. (End)
From G. C. Greubel, Jun 24 2024: (Start)
T(2*n-1, n) = A000007(n-1), n >= 1.
T(2*n, n) = A000012(n), n >= 1.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (1 - (-1)^n)*n/2.
Sum_{k=1..floor(n+1)/2} T(n-k+1, k) = A092843(n+1).
Sum_{k=1..n} (k+1)*T(n, k) = A209295(n).
Sum_{k=1..n} k^3 * T(n, k) = A343497(n).
Sum_{k=1..n} k^4 * T(n, k) = A343498(n).
Sum_{k=1..n} k^5 * T(n, k) = A343499(n). (End)

A069097 Moebius transform of A064987, n*sigma(n).

Original entry on oeis.org

1, 5, 11, 22, 29, 55, 55, 92, 105, 145, 131, 242, 181, 275, 319, 376, 305, 525, 379, 638, 605, 655, 551, 1012, 745, 905, 963, 1210, 869, 1595, 991, 1520, 1441, 1525, 1595, 2310, 1405, 1895, 1991, 2668, 1721, 3025, 1891, 2882, 3045, 2755, 2255, 4136, 2737
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

Equals A127569 * [1, 2, 3, ...]. - Gary W. Adamson, Jan 19 2007
Equals row sums of triangle A143309 and of triangle A143312. - Gary W. Adamson, Aug 06 2008
Dirichlet convolution of A000290 and A000010 (see Jovovic formula). - R. J. Mathar, Feb 03 2011

Crossrefs

Column 2 of A343510.
For Sum_{k = 1..n} gcd(k,n)^m see A018804 (m = 1), A343497 (m = 3), A343498 (m = 4) and A343499 (m = 5).

Programs

  • Mathematica
    A069097[n_]:=n^2*Plus @@((EulerPhi[#]/#^2)&/@ Divisors[n]); Array[A069097, 100] (* Enrique Pérez Herrero, Feb 25 2012 *)
    f[p_, e_] := p^(e-1)*(p^e*(p+1)-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    for(n=1,100,print1((sumdiv(n,k,k*sigma(k)*moebius(n/k))),","))

Formula

a(n) = Sum_{d|n} d^2*phi(n/d). - Vladeta Jovovic, Jul 31 2002
a(n) = Sum_{k=1..n} gcd(n, k)^2. - Vladeta Jovovic, Aug 27 2003
Dirichlet g.f.: zeta(s-2)*zeta(s-1)/zeta(s). - R. J. Mathar, Feb 03 2011
a(n) = n*Sum_{d|n} J_2(d)/d, where J_2 is A007434. - Enrique Pérez Herrero, Feb 25 2012.
G.f.: Sum_{n >= 1} phi(n)*(x^n + x^(2*n))/(1 - x^n)^3 = x + 5*x^2 + 11*x^3 + 22*x^4 + .... - Peter Bala, Dec 30 2013
Multiplicative with a(p^e) = p^(e-1)*(p^e*(p+1)-1). - R. J. Mathar, Jun 23 2018
Sum_{k=1..n} a(k) ~ Pi^2 * n^3 / (18*zeta(3)). - Vaclav Kotesovec, Sep 18 2020
a(n) = Sum_{k=1..n} (n/gcd(n,k))^2*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
From Peter Bala, Dec 26 2023: (Start)
For n odd, a(n) = Sum_{k = 1..n} gcd(k,n)/cos(k*Pi/n)^2 (see Osipov and also Chu, p. 51).
It appears that for n odd, Sum_{k = 1..n} (-1)^(k+1)*gcd(k,n)/cos(k*Pi/n)^2 = n. (End)
a(n) = Sum_{1 <= i, j <= n} gcd(i, j, n). Cf. A360428. - Peter Bala, Jan 16 2024
Sum_{k=1..n} a(k)/k ~ Pi^2 * n^2 / (12*zeta(3)). - Vaclav Kotesovec, May 11 2024

A343498 a(n) = Sum_{k=1..n} gcd(k, n)^4.

Original entry on oeis.org

1, 17, 83, 274, 629, 1411, 2407, 4388, 6729, 10693, 14651, 22742, 28573, 40919, 52207, 70216, 83537, 114393, 130339, 172346, 199781, 249067, 279863, 364204, 393145, 485741, 545067, 659518, 707309, 887519, 923551, 1123472, 1216033, 1420129, 1514003, 1843746, 1874197
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Crossrefs

Programs

  • Magma
    A343498:= func< n | (&+[d^4*EulerPhi(Floor(n/d)): d in Divisors(n)]) >;
    [A343498(n): n in [1..50]]; // G. C. Greubel, Jun 24 2024
    
  • Mathematica
    a[n_] := Sum[GCD[k, n]^4, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
    f[p_, e_] := p^(e-1)*(p^(3*e+4) - p^(3*e) - p + 1)/(p^3-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^4);
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*d^4);
    
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 3));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+11*x^k+11*x^(2*k)+x^(3*k))/(1-x^k)^5))
    
  • SageMath
    def A343498(n): return sum(k^4*euler_phi(n/k) for k in (1..n) if (k).divides(n))
    [A343498(n) for n in range(1,51)] # G. C. Greubel, Jun 24 2024

Formula

a(n) = Sum_{d|n} phi(n/d) * d^4.
a(n) = Sum_{d|n} mu(n/d) * d * sigma_3(d).
G.f.: Sum_{k >= 1} phi(k) * x^k * (1 + 11*x^k + 11*x^(2*k) + x^(3*k))/(1 - x^k)^5.
Dirichlet g.f.: zeta(s-1) * zeta(s-4) / zeta(s). - Ilya Gutkovskiy, Apr 18 2021
Sum_{k=1..n} a(k) ~ Pi^4 * n^5 / (450*zeta(5)). - Vaclav Kotesovec, May 20 2021
Multiplicative with a(p^e) = p^(e-1)*(p^(3*e+4) - p^(3*e) - p + 1)/(p^3-1). - Amiram Eldar, Nov 22 2022
a(n) = Sum_{1 <= i, j, k, l <= n} gcd(i, j, k, l, n) = Sum_{d divides n} d * J_4(n/d), where the Jordan totient function J_4(n) = A059377(n). - Peter Bala, Jan 18 2024

A343510 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{j=1..n} gcd(j, n)^k.

Original entry on oeis.org

1, 1, 3, 1, 5, 5, 1, 9, 11, 8, 1, 17, 29, 22, 9, 1, 33, 83, 74, 29, 15, 1, 65, 245, 274, 129, 55, 13, 1, 129, 731, 1058, 629, 261, 55, 20, 1, 257, 2189, 4162, 3129, 1411, 349, 92, 21, 1, 513, 6563, 16514, 15629, 8085, 2407, 596, 105, 27, 1, 1025, 19685, 65794, 78129, 47515, 16813, 4388, 789, 145, 21
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Examples

			G.f. of column 3: Sum_{i>=1} phi(i) * (x^i + 4*x^(2*i) + x^(3*i))/(1 - x^i)^4.
Square array begins:
   1,  1,   1,    1,     1,      1,      1, ...
   3,  5,   9,   17,    33,     65,    129, ...
   5, 11,  29,   83,   245,    731,   2189, ...
   8, 22,  74,  274,  1058,   4162,  16514, ...
   9, 29, 129,  629,  3129,  15629,  78129, ...
  15, 55, 261, 1411,  8085,  47515, 282381, ...
  13, 55, 349, 2407, 16813, 117655, 823549, ...
		

Crossrefs

Columns k=1..7 give A018804, A069097, A343497, A343498, A343499, A343508, A343509.
T(n-2,n) gives A342432.
T(n-1,n) gives A342433.
T(n,n) gives A332517.
T(n,n+1) gives A321294.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, EulerPhi[n/#] * #^k &]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 18 2021 *)
  • PARI
    T(n, k) = sum(j=1, n, gcd(j, n)^k);
    
  • PARI
    T(n, k) = sumdiv(n, d, eulerphi(n/d)*d^k);
    
  • PARI
    T(n, k) = sumdiv(n, d, moebius(n/d)*d*sigma(d, k-1));

Formula

G.f. of column k: Sum_{i>=1} phi(i) * ( Sum_{j=1..k} A008292(k, j) * x^(i*j) )/(1 - x^i)^(k+1).
T(n,k) = Sum_{d|n} phi(n/d) * d^k.
T(n,k) = Sum_{d|n} mu(n/d) * d * sigma_{k-1}(d).
Dirichlet g.f. of column k: zeta(s-1) * zeta(s-k) / zeta(s). - Ilya Gutkovskiy, Apr 18 2021
T(n,k) = Sum_{j=1..n} (n/gcd(n,j))^k*phi(gcd(n,j))/phi(n/gcd(n,j)). - Richard L. Ollerton, May 10 2021
T(n,k) = Sum_{1 <= j_1, j_2, ..., j_k <= n} gcd(j_1, j_2, ..., j_k)^2 = Sum_{d divides n} d * J_k(n/d), where J_k(n) denotes the k-th Jordan totient function. - Peter Bala, Jan 29 2024

A344522 a(n) = Sum_{1 <= i, j, k <= n} gcd(i,j,k).

Original entry on oeis.org

1, 9, 30, 76, 141, 267, 400, 624, 885, 1249, 1590, 2208, 2689, 3411, 4248, 5248, 6081, 7485, 8530, 10248, 11889, 13687, 15228, 17988, 20053, 22569, 25242, 28588, 31053, 35463, 38284, 42540, 46581, 50893, 55362, 61824, 65857, 71247, 76884, 84388, 89349, 97881, 103342
Offset: 1

Views

Author

Seiichi Manyama, May 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[EulerPhi[k] * Quotient[n, k]^3, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 22 2021 *)
  • PARI
    a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, gcd([i, j, k]))));
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(k)*(n\k)^3);
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+4*x^k+x^(2*k))/(1-x^k)^3)/(1-x))

Formula

a(n) = Sum_{k=1..n} phi(k) * floor(n/k)^3.
G.f.: (1/(1 - x)) * Sum_{k >= 1} phi(k) * x^k * (1 + 4*x^k + x^(2*k))/(1 - x^k)^3.
a(n) ~ Pi^2 * n^3 / (6*zeta(3)). - Vaclav Kotesovec, May 23 2021

A343499 a(n) = Sum_{k=1..n} gcd(k, n)^5.

Original entry on oeis.org

1, 33, 245, 1058, 3129, 8085, 16813, 33860, 59541, 103257, 161061, 259210, 371305, 554829, 766605, 1083528, 1419873, 1964853, 2476117, 3310482, 4119185, 5315013, 6436365, 8295700, 9778145, 12253065, 14468481, 17788154, 20511177, 25297965, 28629181, 34672912, 39459945, 46855809
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Crossrefs

Programs

  • Magma
    A343499:= func< n | (&+[d^5*EulerPhi(Floor(n/d)): d in Divisors(n)]) >;
    [A343499(n): n in [1..50]]; // G. C. Greubel, Jun 24 2024
    
  • Mathematica
    a[n_] := Sum[GCD[k, n]^5, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
    f[p_, e_] := p^(e-1)*(p^(4*e+5) - p^(4*e) - p + 1)/(p^4-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^5);
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*d^5);
    
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 4));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+26*x^k+66*x^(2*k)+26*x^(3*k)+x^(4*k))/(1-x^k)^6))
    
  • SageMath
    def A343499(n): return sum(k^5*euler_phi(n/k) for k in (1..n) if (k).divides(n))
    [A343499(n) for n in range(1,51)] # G. C. Greubel, Jun 24 2024

Formula

a(n) = Sum_{d|n} phi(n/d) * d^5.
a(n) = Sum_{d|n} mu(n/d) * d * sigma_4(d).
G.f.: Sum_{k >= 1} phi(k) * x^k * (1 + 26*x^k + 66*x^(2*k) + 26*x^(3*k) + x^(4*k))/(1 - x^k)^6.
Dirichlet g.f.: zeta(s-1) * zeta(s-5) / zeta(s). - Ilya Gutkovskiy, Apr 18 2021
Sum_{k=1..n} a(k) ~ 315*zeta(5)*n^6 / (2*Pi^6). - Vaclav Kotesovec, May 20 2021
Multiplicative with a(p^e) = p^(e-1)*(p^(4*e+5) - p^(4*e) - p + 1)/(p^4-1). - Amiram Eldar, Nov 22 2022
a(n) = Sum_{1 <= i_1, ..., i_5 <= n} gcd(i_1, ..., i_5, n) = Sum_{d divides n} d * J_5(n/d), where the Jordan totient function J_5(n) = A059378(n). - Peter Bala, Jan 29 2024

A368743 a(n) = Sum_{1 <= i, j <= n} gcd(i, j, n)^3.

Original entry on oeis.org

1, 11, 35, 100, 149, 385, 391, 848, 1017, 1639, 1451, 3500, 2365, 4301, 5215, 6976, 5201, 11187, 7219, 14900, 13685, 15961, 12695, 29680, 19225, 26015, 28107, 39100, 25229, 57365, 30751, 56576, 50785, 57211, 58259, 101700, 52021, 79409, 82775, 126352
Offset: 1

Views

Author

Peter Bala, Jan 20 2024

Keywords

Crossrefs

Programs

  • Maple
    seq( add(add(igcd(i, j, n)^3, i = 1..n), j = 1..n), n = 1..50);
    # faster program for large n
    with(numtheory):
    A007434 := proc(n) add(d^2*mobius(n/d), d in divisors(n)) end proc:
    seq( add(d^3*A007434(n/d), d in divisors(n)), n = 1..500);
  • Mathematica
    f[p_, e_] := p^(3*e - 2)*(p^2 + p + 1) - p^(2*e - 2)*(p + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 29 2024 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; p^(3*e - 2)*(p^2 + p + 1) - p^(2*e - 2)*(p + 1));} \\ Amiram Eldar, Jan 29 2024
    
  • Python
    from math import prod
    from sympy import factorint
    def A368743(n): return prod(p**(e-1<<1)*(p**e*(p*(q:=p+1)+1)-q) for p, e in factorint(n).items()) # Chai Wah Wu, Jan 29 2024

Formula

a(n) = Sum_{1 <= i, j, k <= n} gcd(i, j, k, n)^2.
a(n) = Sum_{d divides n} d^3 * J_2(n/d) = Sum_{d divides n} d^2 * J_3(n/d), where the Jordan totient functions J_2(n) = A007434(n) and J_3(n) = A059376(n).
Dirichlet g.f.: zeta(s-2) * zeta(s-3)/zeta(s).
a(n) is a multiplicative function: for prime p, a(p^k) = p^(3*k-2)*(p^2 + p + 1) - p^(2*k-2)*(p + 1).
Sum_{k=1..n} a(k) ~ c * n^4, where c = 15/(4*Pi^2) = 0.379954... . - Amiram Eldar, Jan 29 2024
a(n) = Sum_{d divides n} mobius(n/d) * d^2 * sigma(d). - Peter Bala, Jan 29 2024

A372929 a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} gcd(x_1, x_2, x_3, n)^4.

Original entry on oeis.org

1, 23, 107, 424, 749, 2461, 2743, 7232, 9369, 17227, 15971, 45368, 30757, 63089, 80143, 119296, 88433, 215487, 137179, 317576, 293501, 367333, 292007, 773824, 483625, 707411, 777843, 1163032, 731669, 1843289, 953311, 1937408, 1708897, 2033959, 2054507, 3972456
Offset: 1

Views

Author

Seiichi Manyama, May 17 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(3*e-3) * (p^3 * (p^(e+1)-1) - p^e + 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d^3*sigma(d));

Formula

a(n) = Sum_{1 <= x_1, x_2, x_3, x_4 <= n} gcd(x_1, x_2, x_3, x_4, n)^3.
a(n) = Sum_{d|n} mu(n/d) * d^3 * sigma(d), where mu is the Moebius function A008683.
From Amiram Eldar, May 21 2024: (Start)
Multiplicative with a(p^e) = p^(3*e-3) * (p^3 * (p^(e+1)-1) - p^e + 1)/(p-1).
Dirichlet g.f.: zeta(s-3)*zeta(s-4)/zeta(s).
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = zeta(2)/zeta(5) = 1.586353589... . (End)

A372928 a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} gcd(x_1, x_2, x_3, n)^3.

Original entry on oeis.org

1, 15, 53, 176, 249, 795, 685, 1856, 2133, 3735, 2661, 9328, 4393, 10275, 13197, 18432, 9825, 31995, 13717, 43824, 36305, 39915, 24333, 98368, 46625, 65895, 76545, 120560, 48777, 197955, 59581, 176128, 141033, 147375, 170565, 375408, 101305, 205755, 232829, 462144
Offset: 1

Views

Author

Seiichi Manyama, May 17 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (e - e/p^3 + 1) * p^(3*e); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d^3*numdiv(d));

Formula

a(n) = Sum_{d|n} mu(n/d) * d^3 * tau(d), where mu is the Moebius function A008683.
From Amiram Eldar, May 21 2024: (Start)
Multiplicative with a(p^e) = (e - e/p^3 + 1) * p^(3*e).
Dirichlet g.f.: zeta(s-3)^2/zeta(s).
Sum_{k=1..n} a(k) ~ (n^4/(4*zeta(4))) * (log(n) + 2*gamma - 1/4 - zeta'(4)/zeta(4)), where gamma is Euler's constant (A001620). (End)

A294404 E.g.f.: exp(-Sum_{n>=1} sigma_2(n) * x^n).

Original entry on oeis.org

1, -1, -9, -31, -23, 3399, 41311, 473129, 1284081, -79051537, -2447228249, -52444297071, -712806368999, -2221410364681, 331443685309647, 15068893004257049, 460836352976093281, 10298306504802529119, 122928784866003823831, -3359583359629857247807
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2017

Keywords

Crossrefs

E.g.f.: exp(-Sum_{n>=1} sigma_k(n) * x^n): A294402 (k=0), A294403 (k=1), this sequence (k=2).

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(-sum(k=1, N, sigma(k, 2)*x^k))))

Formula

a(0) = 1 and a(n) = (-1) * (n-1)! * Sum_{k=1..n} k*A001157(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: Product_{k>=1} (1 - x^k)^f(k), where f(k) = (1/k) * Sum_{j=1..k} gcd(k,j)^3. - Ilya Gutkovskiy, Aug 17 2021
Showing 1-10 of 13 results. Next