cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 40 results. Next

A129691 Inverse of A054523.

Original entry on oeis.org

1, -1, 1, -2, 0, 1, -1, -1, 0, 1, -4, 0, 0, 0, 1, 2, -2, -1, 0, 0, 1, -6, 0, 0, 0, 0, 0, 1, -1, -1, 0, -1, 0, 0, 0, 1, -2, 0, -2, 0, 0, 0, 0, 0, 1, 4, -4, 0, 0, -1, 0, 0, 0, 0, 1, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, -1, -2, 0, -1, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, May 04 2007

Keywords

Comments

Row sums = A130054, (1, -1, -1, -3, 0, -5, -2, -3, 0, ...). A129691 * A126988 = A051731. Left column = A023900: (1, -1, -2, -1, -4, 2, -6, ...).

Examples

			First few rows of the triangle:
   1;
  -1,  1;
  -2,  0,  1;
  -1, -1,  0,  1;
  -4,  0,  0,  0,  1;
   2, -2, -1,  0,  0,  1;
  ...
		

Crossrefs

Programs

  • PARI
    T(n,k)={if(n%k, 0, sumdivmult(n/k, d, d*moebius(d)))} \\ Andrew Howroyd, Aug 03 2018

Formula

A054523^(-1), as an infinite lower triangular matrix.
T(n,k) = A023900(n/k) for k | n, T(n,k) = 0 otherwise. - Andrew Howroyd, Aug 03 2018

Extensions

Terms a(56) and beyond from Andrew Howroyd, Aug 03 2018

A127649 A127648 * A054523 as infinite lower triangular matrices.

Original entry on oeis.org

1, 2, 2, 6, 0, 3, 8, 4, 0, 4, 20, 0, 0, 0, 5, 12, 12, 6, 0, 0, 6, 42, 0, 0, 0, 0, 0, 7, 32, 16, 0, 8, 0, 0, 0, 8, 54, 0, 18, 0, 0, 0, 0, 0, 9, 40, 40, 0, 0, 10, 0, 0, 0, 0, 10, 110, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 48, 24, 24, 24, 0, 12, 0, 0, 0, 0, 0, 12, 156, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 84
Offset: 1

Views

Author

Gary W. Adamson, Jan 22 2007

Keywords

Comments

Natural number transform of A054523.
Row sums = n^2, left column = A002618

Examples

			First few rows of the triangle are:
1;
2, 2;
6, 0, 3;
8, 4, 0, 4;
20, 0, 0, 0, 5;
12, 12, 6, 0, 0, 6;
42, 0, 0, 0, 0, 0, 7;
...
		

Crossrefs

Programs

  • Maple
    A054523 := proc(n,k) if n mod k = 0 then numtheory[phi](n/k) ; else 0 ; fi ; end: A127649 := proc(n,k) A054523(n,k)*n ; end: for n from 1 to 20 do for k from 1 to n do printf("%d,",A127649(n,k)) ; od: od: # R. J. Mathar, Nov 01 2007

Formula

T(n,k)=n*A054523(n,k). - R. J. Mathar, Nov 01 2007
T(n,k) = Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y), n) = k], where f(x,y) = x - y. - Mats Granvik, Oct 08 2023

Extensions

More terms from R. J. Mathar, Nov 01 2007

A127478 Triangle T(n,k) read by rows: matrix product A054523 * A054522.

Original entry on oeis.org

1, 2, 1, 3, 0, 2, 4, 2, 0, 2, 5, 0, 0, 0, 4, 6, 3, 4, 0, 0, 2, 7, 0, 0, 0, 0, 0, 6, 8, 4, 0, 4, 0, 0, 0, 4, 9, 0, 6, 0, 0, 0, 0, 0, 6, 10, 5, 0, 0, 8, 0, 0, 0, 0, 4, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 12, 6, 8, 6, 0, 4, 0, 0, 0, 0, 0, 4, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 14, 7, 0, 0, 0, 0, 12, 0, 0, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 15 2007

Keywords

Comments

If the two matrices A054523 and A054522 are commuted, the matrix product becomes A127477.

Examples

			First few rows of the triangle are:
.1;
.2, 1;
.3, 0, 2;
.4, 2, 0, 2;
.5, 0, 0, 0, 4;
.6, 3, 4, 0, 0, 2;
.7, 0, 0, 0, 0, 0, 6;
.8, 4, 0, 4, 0, 0, 0, 4;
....
		

Crossrefs

Programs

  • Maple
    A054522 := proc(n,k) if k = 1 then 1; elif n mod k = 0 then numtheory[phi](k) ; else 0 ; fi; end:
    A054523 := proc(n,k) if k = n then 1; elif n mod k = 0 then numtheory[phi](n/k) ; else 0 ; fi; end:
    A127478 := proc(n,k) add( A054523(n,j)*A054522(j,k), j=k..n) ; end: seq(seq( A127478(n,k),k=1..n),n=1..15) ;

Formula

T(n,k) = sum_{j=k..n} A054523(n,j) * A054522(j,k).
T(n,n) = A000010(n) (diagonal).
sum_{k=1..n} T(n,k) = A018804(n) (row sums).

Extensions

Converted comments to formulas, extended - R. J. Mathar, Sep 11 2009

A129559 A054523 * A115361.

Original entry on oeis.org

1, 2, 1, 2, 0, 1, 4, 2, 0, 1, 4, 0, 0, 0, 1, 4, 2, 2, 0, 0, 1, 6, 0, 0, 0, 0, 0, 1, 8, 4, 0, 2, 0, 0, 0, 1, 6, 0, 2, 0, 0, 0, 0, 0, 1, 8, 4, 0, 0, 2, 0, 0, 0, 0, 1, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 8, 4, 4, 2, 0, 2, 0, 0, 0, 0, 0, 1, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Apr 20 2007

Keywords

Comments

row sums = A129527: (1, 3, 3, 7, 5, 9, 7, 15, ...). Left column = phi(2*n), A062570: (1, 2, 2, 4, 4, 4, 6, 8, ...).

Examples

			First few rows of the triangle:
  1;
  2, 1;
  2, 0, 1;
  4, 2, 0, 1;
  4, 0, 0, 0, 1;
  4, 2, 2, 0, 0, 1;
  6, 0, 0, 0, 0, 0, 1;
  8, 4, 0, 2, 0, 0, 0, 1;
  ...
		

Crossrefs

Column 1 is A062570.
Row sums are A129527 (inverse Moebius transform of A062570).

Programs

  • PARI
    T(n, k)=if(n%k, 0, eulerphi(2*n/k)) \\ Andrew Howroyd, Aug 07 2018

Formula

Equals A054523 * A115361 as infinite lower triangular matrices.
T(n,k) = phi(2*n/k) for k | n, T(n,k) = 0 otherwise. - Andrew Howroyd, Aug 07 2018

Extensions

Terms a(56) and beyond from Andrew Howroyd, Aug 07 2018

A127192 Triangle read by rows: square of A054523.

Original entry on oeis.org

1, 2, 1, 4, 0, 1, 5, 2, 0, 1, 8, 0, 0, 0, 1, 8, 4, 2, 0, 0, 1, 12, 0, 0, 0, 0, 0, 1, 12, 5, 0, 2, 0, 0, 0, 1, 16, 0, 4, 0, 0, 0, 0, 0, 1, 16, 8, 0, 0, 2, 0, 0, 0, 0, 1, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 20, 8, 5, 4, 0, 2, 0, 0, 0, 0, 0, 1, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 07 2007

Keywords

Comments

Row sums = A018804: (1, 3, 5, 8, 9, 15, ...), sum of gcd(k,n) for 1<= k <= n. Left column = A029935: (1, 2, 4, 5, 8, 8, 12, 12, ...). A127192 * d(n) = d(n) * n, or A127192 * A000005 = A038040 = (1, 4, 6, 12, 10, 24, 14, ...).
Column k contains terms of A029935 interspersed with (k-1) zeros.

Examples

			First few rows of the triangle:
   1;
   2, 1;
   4, 0, 1;
   5, 2, 0, 1;
   8, 0, 0, 0, 1;
   8, 4, 2, 0, 0, 1;
  12, 0, 0, 0, 0, 0, 1;
  12, 5, 0, 2, 0, 0, 0, 1;
  16, 0, 4, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Extensions

a(20) ff. corrected and more terms from Georg Fischer, May 31 2023

A127477 Triangle T(n,k) read by rows: matrix product A054522 * A054523.

Original entry on oeis.org

1, 2, 1, 5, 0, 2, 6, 3, 0, 2, 17, 0, 0, 0, 4, 10, 5, 4, 0, 0, 2, 37, 0, 0, 0, 0, 0, 6, 22, 11, 0, 6, 0, 0, 0, 4, 41, 0, 14, 0, 0, 0, 0, 0, 6, 34, 17, 0, 0, 8, 0, 0, 0, 0, 4, 101, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 30, 15, 12, 10, 0, 6, 0, 0, 0, 0, 0, 4, 145, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 74, 37, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 15 2007

Keywords

Comments

If the two matrices A054522 and A054523 are commuted, the matrix product becomes A127478.

Examples

			First few rows of the triangle are:
1;
2, 1;
5, 0, 2;
6, 3, 0, 2;
17, 0, 0, 0, 4;
10, 5, 4, 0, 0, 2;
37, 0, 0, 0, 0, 0, 6;
22, 11, 0, 6, 0, 0, 0, 4;
		

Crossrefs

Programs

  • Maple
    A054522 := proc(n,k) if k = 1 then 1; elif n mod k = 0 then numtheory[phi](k) ; else 0 ; fi; end:
    A054523 := proc(n,k) if k = n then 1; elif n mod k = 0 then numtheory[phi](n/k) ; else 0 ; fi; end:
    A127477 := proc(n,k) add( A054522(n,j)*A054523(j,k), j=k..n) ; end: seq(seq( A127477(n,k),k=1..n),n=1..15) ;

Formula

T(n,k) = sum_{j=k..n} A054522(n,j) * A054523(j,k).
sum_{k=1..n} T(n,k) = A057660(n) (row sums).
T(n,n) = A000010(n) (diagonal).
T(n,1) = A029939(n).

Extensions

Converted comments to formulas, extended - R. J. Mathar, Sep 11 2009

A128391 A054523^24 * A000594.

Original entry on oeis.org

1, 0, 300, -1724, 4926, 0, -16600, 44600, -100299, 0, 534852, -517200, -577450, 0, 1477800, 2486626, -6905550, 0, 10661852, -8492424, -4980000, 0, 18643800, 13380000, -25030649, 0, -78396200, 28618400, 128407302, 0, -52842448, -150834520, 160455600, 0, -81771600
Offset: 1

Views

Author

Gary W. Adamson, Feb 28 2007

Keywords

Comments

Conjecture: Given A054523^k, k = any positive integer, "zero" appears only in the sequence A018391 (k=24).
Each application of A054523 corresponds to the Dirichlet convolution of A000010 with the sequence on the right. Since both A000594 and A000010 are multiplicative, the resulting sequence will also be multiplicative. - Andrew Howroyd, Aug 03 2018

Crossrefs

Programs

  • Mathematica
    nmax = 40;
    T[n_, k_] := If[Divisible[n, k], EulerPhi[n/k], 0]; T[1, 1] = 1;
    M = Table[T[n, k], {n, 1, nmax}, {k, 1, nmax}];
    MatrixPower[M, 24].RamanujanTau[Range[nmax]] (* Jean-François Alcover, Sep 20 2019 *)
  • PARI
    seq(n, k=24)={my(u=vector(n,n,eulerphi(n)), v=vector(n,n,ramanujantau(n))); for(i=1, k, v=dirmul(u,v)); v} \\ Andrew Howroyd, Aug 03 2018

Formula

A054523^24 as an infinite lower triangular matrix * A000594.

Extensions

a(7) corrected and terms a(11) and beyond from Andrew Howroyd, Aug 03 2018

A129479 Triangle read by rows: A054523 * A097806 as infinite lower triangular matrices.

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 4, 0, 0, 1, 1, 4, 3, 1, 0, 1, 1, 6, 0, 0, 0, 0, 1, 1, 6, 2, 1, 1, 0, 0, 1, 1, 6, 2, 2, 0, 0, 0, 0, 1, 1, 8, 4, 0, 1, 1, 0, 0, 0, 1, 1, 10, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 4, 4, 2, 1, 1, 0, 0, 0, 0, 1, 1, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Apr 17 2007

Keywords

Examples

			First few rows of the triangle:
  1;
  2, 1;
  2, 1, 1;
  3, 1, 1, 1;
  4, 0, 0, 1, 1;
  4, 3, 1, 0, 1, 1;
  6, 0, 0, 0, 0, 1, 1;
  6, 2, 1, 1, 0, 0, 1, 1;
  ...
		

Crossrefs

Cf. A000010 (alternating row sums), A053158 (row sums).

Programs

  • Magma
    A054523:= func< n,k | n eq 1 select 1 else (n mod k) eq 0 select EulerPhi(Floor(n/k)) else 0 >;
    A129479:= func< n,k | k le n-1 select A054523(n,k) + A054523(n,k+1) else 1 >;
    [A129479(n,k): k in [1..n], n in [1..16]]; // G. C. Greubel, Feb 11 2024
    
  • Mathematica
    A054523[n_, k_]:= If[n==1, 1, If[Divisible[n,k], EulerPhi[n/k], 0]];
    T[n_, k_]:= If[kA054523[n, j+k], {j,0,1}], 1];
    Table[T[n,k],{n,16},{k,n}]//Flatten (* G. C. Greubel, Feb 11 2024 *)
  • SageMath
    def A054523(n,k):
        if (k==n): return 1
        elif (n%k): return 0
        else: return euler_phi(n//k)
    def A129479(n, k):
        if k<0 or k>n: return 0
        elif k==n: return 1
        else: return A054523(n,k) + A054523(n,k+1)
    flatten([[A129479(n, k) for k in range(1,n+1)] for n in range(1,17)]) # G. C. Greubel, Feb 11 2024

Formula

Sum_{k=1..n} T(n, k) = A053158(n) (row sums).
T(n, 1) = A126246(n).
From G. C. Greubel, Feb 11 2024: (Start)
T(n, k) = A054523(n, k) + A054523(n, k+1) for k < n, otherwise 1.
T(2*n-1, n) = A019590(n).
T(2*n, n) = A054977(n).
T(2*n+1, n) = A000038(n).
T(3*n, n) = A063524(n-1).
T(3*n-2, n) = A183918(n+2).
Sum_{k=1..n} (-1)^(k-1) * T(n, k) = A000010(n). (End)

A126705 A097806 * A054523 as infinite lower triangular matrices.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 1, 1, 1, 6, 1, 0, 1, 1, 6, 2, 1, 0, 1, 1, 8, 2, 1, 0, 0, 1, 1, 10, 2, 0, 1, 0, 0, 1, 1, 10, 2, 2, 1, 0, 0, 0, 1, 1, 10, 4, 2, 0, 1, 0, 0, 0, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Apr 17 2007

Keywords

Comments

Row sums = (1, 3, 5, 7, 9, ...). A129479 = A054523 * A097806. A097806 = the pairwise operator.

Examples

			First few rows of the triangle:
  1;
  2, 1;
  3, 1, 1;
  4, 1, 1, 1;
  6, 1, 0, 1, 1;
  6, 2, 1, 0, 1, 1;
  8, 2, 1, 0, 0, 1, 1;
  ...
		

Crossrefs

A128317 Triangle read by rows: T = A054523 * A130595, as a lower triangular matrix.

Original entry on oeis.org

1, 0, 1, 3, -2, 1, 0, 4, -3, 1, 5, -4, 6, -4, 1, 0, 5, -9, 10, -5, 1, 7, -6, 15, -20, 15, -6, 1, 0, 12, -24, 36, -35, 21, -7, 1, 9, -12, 30, -56, 70, -56, 28, -8, 1, 0, 9, -30, 80, -125, 126, -84, 36, -9, 1, 11, -10, 45, -120, 210, -252, 210, -120, 45, -10, 1
Offset: 1

Views

Author

Gary W. Adamson, Feb 25 2007

Keywords

Examples

			First few rows of the triangle:
  1;
  0,  1;
  3, -2,  1;
  0,  4, -3,   1;
  5, -4,  6,  -4,  1;
  0,  5, -9,  10, -5,  1;
  7, -6, 15, -20, 15, -6, 1;
  ...
		

Crossrefs

Sums include: A000010 (row sums), A126246.

Programs

  • Magma
    A128317:= func< n,k | (&+[(-1)^(d+k)*EulerPhi(Floor(n/d))*Binomial(d-1, k-1) : d in Divisors(n)]) >;
    [A128317(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jun 24 2024
    
  • Mathematica
    A128317[n_, k_]:= DivisorSum[n, (-1)^(#+k)*EulerPhi[n/#]*Binomial[#-1, k-1]  &];
    Table[A128317[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jun 24 2024 *)
  • SageMath
    def A128317(n,k): return sum((-1)^(k+j)*euler_phi(n/j)*binomial(j-1, k-1) for j in (1..n) if (j).divides(n))
    flatten([[A128317(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jun 24 2024

Formula

Equals A054523 * signed A007318 as infinite lower triangular matrices. A007318 is signed by columns: (+, -, +, ...).
Sum_{k=1..n} T(n, k) = A000010(n) (row sums).
From G. C. Greubel, Jun 24 2024: (Start)
T(n, k) = A054523 * A130595, as a lower triangular matrix.
T(n, k) = Sum_{j=k..n} (-1)^(k+j)*A054523(n,j)*binomial(j-1, k-1).
T(n, k) = Sum_{d|n} (-1)^(d+k)*EulerPhi(n/d)*binomial(d-1, k-1).
T(2*n-1, n) = (-1)^(n-1)*A000984(n-1), n >= 1.
T(2*n-2, n-1) = (-1)^n*A001700(n-2), n >= 2.
Sum_{k=1..n} k*T(n, k) = A126246(n). (End)
Showing 1-10 of 40 results. Next