Original entry on oeis.org
1, 0, 2, -1, 0, 3, -1, 0, 0, 4, -3, 0, 0, 0, 5, 0, -2, 0, 0, 0, 6, -5, 0, 0, 0, 0, 0, 7, -2, -2, 0, 0, 0, 0, 0, 8, -3, 0, -3, 0, 0, 0, 0, 0, 9, 0, -6, 0, 0, 0, 0, 0, 0, 0, 10
Offset: 1
First few rows of the triangle:
1;
0, 2;
-1, 0, 3;
-1, 0, 0, 4;
-3, 0, 0, 0, 5;
0, -2, 0, 0, 0, 6;
-5, 0, 0, 0, 0, 0, 7;
...
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 3, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 5, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
First few rows of the triangle:
1;
0, 1;
1, 0, 1;
0, 0, 0, 1;
3, 0, 0, 0, 1;
0, 1, 0, 0, 0, 1;
5, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 1;
0, 0, 1, 0, 0, 0, 0, 0, 1;
...
A130054
Inverse Moebius transform of A023900.
Original entry on oeis.org
1, 0, -1, -1, -3, 0, -5, -2, -3, 0, -9, 1, -11, 0, 3, -3, -15, 0, -17, 3, 5, 0, -21, 2, -7, 0, -5, 5, -27, 0, -29, -4, 9, 0, 15, 3, -35, 0, 11, 6, -39, 0, -41, 9, 9, 0, -45, 3, -11, 0, 15, 11, -51, 0, 27, 10, 17, 0, -57, -3, -59, 0, 15, -5, 33, 0, -65, 15, 21
Offset: 1
-
[&+[d*MoebiusMu(d)*NumberOfDivisors(n div d):d in Divisors(n)]:n in [1..70]]; // Marius A. Burtea, Nov 17 2019
-
with(numtheory): seq(add(d*mobius(d)*tau(n/d), d in divisors(n)), n=1..60); # Ridouane Oudra, Nov 17 2019
-
b[n_] := Sum[d MoebiusMu[d], {d, Divisors[n]}];
a[n_] := Sum[b[n/d], {d, Divisors[n]}];
a /@ Range[1, 100] (* Jean-François Alcover, Sep 20 2019, from PARI *)
f[p_, e_] := 1-(p-1)*e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 23 2020 *)
-
\\ here b(n) is A023900
b(n)={sumdivmult(n, d, d*moebius(d))}
a(n)={sumdiv(n, d, b(n/d))} \\ Andrew Howroyd, Aug 03 2018
Name changed and terms a(11) and beyond from
Andrew Howroyd, Aug 03 2018
A130029
a(n) = Sum_{d|n} phi(n/d) * prime(d).
Original entry on oeis.org
2, 5, 9, 14, 19, 28, 29, 40, 45, 60, 51, 88, 65, 90, 105, 114, 91, 150, 103, 178, 161, 160, 127, 252, 181, 202, 215, 268, 165, 352, 187, 306, 289, 278, 331, 462, 229, 320, 357, 506, 259, 542, 275, 474, 537, 392, 303, 706, 413, 586, 495, 590, 345, 720, 571, 764, 565, 520
Offset: 1
a(4) = 14 = dot product of row 4 of A054523, (2, 1, 0, 1) and primes (2, 3, 5, 7) = (4 + 3 + 0 + 7) = 14.
A130030
a(n) = Sum_{d|n} (-1)^omega(n/d) * phi(rad(n/d)) * prime(d).
Original entry on oeis.org
2, 1, 1, 2, 3, 6, 5, 7, 9, 14, 11, 15, 17, 20, 21, 22, 27, 20, 31, 23, 33, 38, 39, 20, 45, 48, 43, 35, 53, 6, 67, 47, 65, 64, 63, 25, 85, 78, 73, 34, 99, 20, 107, 63, 45, 94, 119, 35, 113, 56, 99, 73, 137, 54, 103, 54, 117, 134, 161, -1, 163, 136, 73, 96, 113, 24, 199, 107, 159, 12, 213
Offset: 1
a(4) = 2 = dot product of row 4 of A129691: (-1, -1, 0, 1) and the first four primes: (2, 3, 5, 7) = (-2, -3, 0, 7) = 2.
Cf.
A000010,
A000040,
A001221,
A007444,
A007947,
A023900,
A054523,
A076479,
A129691,
A130029,
A333177.
A366444
Triangle read by rows: T(n,k) = phi(n/k)*A023900(k) if k divides n, T(n,k) = 0 otherwise (n >= 1, 1 <= k <= n).
Original entry on oeis.org
1, 1, -1, 2, 0, -2, 2, -1, 0, -1, 4, 0, 0, 0, -4, 2, -2, -2, 0, 0, 2, 6, 0, 0, 0, 0, 0, -6, 4, -2, 0, -1, 0, 0, 0, -1, 6, 0, -4, 0, 0, 0, 0, 0, -2, 4, -4, 0, 0, -4, 0, 0, 0, 0, 4, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10, 4, -2, -4, -2, 0, 2, 0, 0, 0, 0, 0, 2
Offset: 1
{
{1}, = 1
{1, -1}, = 0
{2, 0, -2}, = 0
{2, -1, 0, -1}, = 0
{4, 0, 0, 0, -4}, = 0
{2, -2, -2, 0, 0, 2}, = 0
{6, 0, 0, 0, 0, 0, -6}, = 0
{4, -2, 0, -1, 0, 0, 0, -1}, = 0
{6, 0, -4, 0, 0, 0, 0, 0, -2}, = 0
{4, -4, 0, 0, -4, 0, 0, 0, 0, 4}, = 0
{10, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10}, = 0
{4, -2, -4, -2, 0, 2, 0, 0, 0, 0, 0, 2} = 0
}
-
nn = 12; g[n_] := DivisorSum[n, MoebiusMu[#] # &]; Flatten[Table[Table[If[Mod[n, k] == 0, EulerPhi[n/k]*g[k], 0], {k, 1, n}], {n, 1, nn}]]
A366445
Triangle read by rows: T(n,k) = A023900(n/k)*phi(k) if k divides n, T(n,k) = 0 otherwise (n >= 1, 1 <= k <= n).
Original entry on oeis.org
1, -1, 1, -2, 0, 2, -1, -1, 0, 2, -4, 0, 0, 0, 4, 2, -2, -2, 0, 0, 2, -6, 0, 0, 0, 0, 0, 6, -1, -1, 0, -2, 0, 0, 0, 4, -2, 0, -4, 0, 0, 0, 0, 0, 6, 4, -4, 0, 0, -4, 0, 0, 0, 0, 4, -10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 2, 2, -2, -4, 0, -2, 0, 0, 0, 0, 0, 4
Offset: 1
{
{1}, = 1
{-1, 1}, = 0
{-2, 0, 2}, = 0
{-1, -1, 0, 2}, = 0
{-4, 0, 0, 0, 4}, = 0
{2, -2, -2, 0, 0, 2}, = 0
{-6, 0, 0, 0, 0, 0, 6}, = 0
{-1, -1, 0, -2, 0, 0, 0, 4}, = 0
{-2, 0, -4, 0, 0, 0, 0, 0, 6}, = 0
{4, -4, 0, 0, -4, 0, 0, 0, 0, 4}, = 0
{-10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10}, = 0
{2, 2, -2, -4, 0, -2, 0, 0, 0, 0, 0, 4} = 0
}
-
nn = 12; g[n_] := DivisorSum[n, MoebiusMu[#] # &]; Flatten[Table[Table[If[Mod[n, k] == 0, g[n/k]*EulerPhi[k], 0], {k, 1, n}], {n, 1, nn}]]
Showing 1-7 of 7 results.
Comments