cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A343510 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{j=1..n} gcd(j, n)^k.

Original entry on oeis.org

1, 1, 3, 1, 5, 5, 1, 9, 11, 8, 1, 17, 29, 22, 9, 1, 33, 83, 74, 29, 15, 1, 65, 245, 274, 129, 55, 13, 1, 129, 731, 1058, 629, 261, 55, 20, 1, 257, 2189, 4162, 3129, 1411, 349, 92, 21, 1, 513, 6563, 16514, 15629, 8085, 2407, 596, 105, 27, 1, 1025, 19685, 65794, 78129, 47515, 16813, 4388, 789, 145, 21
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Examples

			G.f. of column 3: Sum_{i>=1} phi(i) * (x^i + 4*x^(2*i) + x^(3*i))/(1 - x^i)^4.
Square array begins:
   1,  1,   1,    1,     1,      1,      1, ...
   3,  5,   9,   17,    33,     65,    129, ...
   5, 11,  29,   83,   245,    731,   2189, ...
   8, 22,  74,  274,  1058,   4162,  16514, ...
   9, 29, 129,  629,  3129,  15629,  78129, ...
  15, 55, 261, 1411,  8085,  47515, 282381, ...
  13, 55, 349, 2407, 16813, 117655, 823549, ...
		

Crossrefs

Columns k=1..7 give A018804, A069097, A343497, A343498, A343499, A343508, A343509.
T(n-2,n) gives A342432.
T(n-1,n) gives A342433.
T(n,n) gives A332517.
T(n,n+1) gives A321294.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, EulerPhi[n/#] * #^k &]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 18 2021 *)
  • PARI
    T(n, k) = sum(j=1, n, gcd(j, n)^k);
    
  • PARI
    T(n, k) = sumdiv(n, d, eulerphi(n/d)*d^k);
    
  • PARI
    T(n, k) = sumdiv(n, d, moebius(n/d)*d*sigma(d, k-1));

Formula

G.f. of column k: Sum_{i>=1} phi(i) * ( Sum_{j=1..k} A008292(k, j) * x^(i*j) )/(1 - x^i)^(k+1).
T(n,k) = Sum_{d|n} phi(n/d) * d^k.
T(n,k) = Sum_{d|n} mu(n/d) * d * sigma_{k-1}(d).
Dirichlet g.f. of column k: zeta(s-1) * zeta(s-k) / zeta(s). - Ilya Gutkovskiy, Apr 18 2021
T(n,k) = Sum_{j=1..n} (n/gcd(n,j))^k*phi(gcd(n,j))/phi(n/gcd(n,j)). - Richard L. Ollerton, May 10 2021
T(n,k) = Sum_{1 <= j_1, j_2, ..., j_k <= n} gcd(j_1, j_2, ..., j_k)^2 = Sum_{d divides n} d * J_k(n/d), where J_k(n) denotes the k-th Jordan totient function. - Peter Bala, Jan 29 2024

A342433 a(n) = Sum_{k=1..n} gcd(k,n)^(n-1).

Original entry on oeis.org

1, 3, 11, 74, 629, 8085, 117655, 2113796, 43059849, 1001955177, 25937424611, 743379914746, 23298085122493, 793811662313709, 29192938251553759, 1152956691126550536, 48661191875666868497, 2185928270773974154773
Offset: 1

Views

Author

Seiichi Manyama, Mar 12 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[GCD[k, n]^(n - 1), {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Mar 12 2021 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^(n-1));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*d^(n-1));
    
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, n-2));

Formula

a(n) = Sum_{d|n} phi(n/d) * d^(n-1).
a(n) = Sum_{d|n} mu(n/d) * d * sigma_(n-2)(d).
a(n) ~ n^(n-1). - Vaclav Kotesovec, May 23 2021

A321294 a(n) = Sum_{d|n} mu(n/d)*d*sigma_n(d).

Original entry on oeis.org

1, 9, 83, 1058, 15629, 282381, 5764807, 134480900, 3486902505, 100048836321, 3138428376731, 107006403495850, 3937376385699301, 155572843119518781, 6568408661060858767, 295150157013526773768, 14063084452067724991025, 708236697425777157039381
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[n/d] d DivisorSigma[n, d], {d, Divisors[n]}], {n, 18}]
    Table[Sum[EulerPhi[n/d] d^(n + 1), {d, Divisors[n]}], {n, 18}]
    Table[Sum[GCD[n, k]^(n + 1), {k, n}], {n, 18}]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, n)); \\ Michel Marcus, Nov 03 2018
    
  • Python
    from sympy import totient, divisors
    def A321294(n):
        return sum(totient(d)*(n//d)**(n+1) for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020

Formula

a(n) = [x^n] Sum_{i>=1} Sum_{j>=1} mu(i)*j^(n+1)*x^(i*j)/(1 - x^(i*j))^2.
a(n) = Sum_{d|n} phi(n/d)*d^(n+1).
a(n) = Sum_{k=1..n} gcd(n,k)^(n+1).
a(n) ~ n^(n+1). - Vaclav Kotesovec, Nov 02 2018

A341036 a(n) = Sum_{k=1..n} gcd(k,n)^(k-2).

Original entry on oeis.org

1, 2, 5, 19, 129, 1306, 16813, 262181, 4783059, 100000214, 2357947701, 61917372083, 1792160394049, 56693912393474, 1946195068811453, 72057594039243049, 2862423051509815809, 121439531096661117354, 5480386857784802185957
Offset: 1

Views

Author

Seiichi Manyama, Mar 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[GCD[k, n]^(k - 2), {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Mar 13 2021 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^(k-2));
Showing 1-4 of 4 results.