A226560
exp( Sum_{n>=1} A226561(n)*x^n/n ), where A226561(n) = Sum_{d|n} d^n*phi(d).
Original entry on oeis.org
1, 1, 3, 21, 155, 2691, 18924, 732230, 9223166, 269544904, 4308339664, 264486350330, 3252603264996, 283488024709418, 5058264756924275, 239269507574263597, 9478611818612363119, 788664781674375008343, 13928483471031628860556, 1889997256419148641470346
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 155*x^4 + 2691*x^5 + 18924*x^6 +...
where
log(A(x)) = x + 5*x^2/2 + 55*x^3/3 + 529*x^4/4 + 12501*x^5/5 + 94835*x^6/6 + 4941259*x^7/7 + 67240193*x^8/8 +...+ A226561(n)*x^n/n +...
-
{A226561(n)=sumdiv(n, d, d*eulerphi(d^n))}
{a(n)=polcoeff(exp(sum(k=1,n,A226561(k)*x^k/k)+x*O(x^n)),n)}
for(n=0,30,print1(a(n),", "))
A332517
a(n) = Sum_{k=1..n} gcd(n,k)^n.
Original entry on oeis.org
1, 5, 29, 274, 3129, 47515, 823549, 16843268, 387459861, 10009769725, 285311670621, 8918311856102, 302875106592265, 11112685048729175, 437893951473411261, 18447025557276459016, 827240261886336764193, 39346558373052524325225, 1978419655660313589123997
Offset: 1
-
[&+[Gcd(n,k)^n:k in [1..n]]: n in [1..20]]; // Marius A. Burtea, Feb 15 2020
-
f:= n -> add(igcd(n,k)^n,k=1..n):
map(f, [$1..30]); # Robert Israel, Feb 16 2020
-
Table[Sum[GCD[n, k]^n, {k, 1, n}], {n, 1, 19}]
Table[Sum[EulerPhi[n/d] d^n, {d, Divisors[n]}], {n, 1, 19}]
Table[Sum[MoebiusMu[n/d] d DivisorSigma[n - 1, d], {d, Divisors[n]}], {n, 1, 19}]
-
a(n) = sum(k=1, n, gcd(n, k)^n); \\ Michel Marcus, Feb 14 2020
-
from sympy import totient, divisors
def A332517(n):
return sum(totient(d)*(n//d)**n for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020
A226459
a(n) = Sum_{d|n} phi(d^d), where phi(n) is the Euler totient function A000010(n).
Original entry on oeis.org
1, 3, 19, 131, 2501, 15573, 705895, 8388739, 258280345, 4000002503, 259374246011, 2972033498453, 279577021469773, 4762288640230761, 233543408203127519, 9223372036863164547, 778579070010669895697, 13115469358432437487707, 1874292305362402347591139
Offset: 1
L.g.f.: L(x) = x + 3*x^2/2 + 19*x^3/3 + 131*x^4/4 + 2501*x^5/5 + ...
where
exp(L(x)) = 1 + x + 2*x^2 + 8*x^3 + 41*x^4 + 547*x^5 + 3193*x^6 + ... + A226458(n)*x^n + ...
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[EulerPhi(k^k)*x^k/(1-x^k): k in [1..3*m]]) )); // G. C. Greubel, Nov 07 2018
-
ttf[n_]:=Module[{d=Divisors[n]},Total[EulerPhi[d^d]]]; Array[ttf,20] (* Harvey P. Dale, Aug 21 2013 *)
With[{nmax = 30}, Rest[CoefficientList[Series[Sum[EulerPhi[k^k]*x^k/(1 - x^k), {k, 1, 2*nmax}], {x, 0, nmax}], x]]] (* G. C. Greubel, Nov 07 2018 *)
-
{a(n)=sumdiv(n,d, eulerphi(d^d))}
for(n=1,30,print1(a(n),", "))
-
a(n) = sum(k=1, n, (n/gcd(k, n))^(n/gcd(k, n)-1)); \\ Seiichi Manyama, Mar 11 2021
-
from sympy import totient, divisors
def A226459(n):
return sum(totient(d)*d**(d-1) for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020
A332621
a(n) = (1/n) * Sum_{k=1..n} n^(n/gcd(n, k)).
Original entry on oeis.org
1, 3, 19, 133, 2501, 15631, 705895, 8389641, 258280489, 4000040011, 259374246011, 2972033984173, 279577021469773, 4762288684702095, 233543408203327951, 9223372037928525841, 778579070010669895697, 13115469358498302735067, 1874292305362402347591139
Offset: 1
-
[(1/n)*&+[n^(n div Gcd(n,k)):k in [1..n]]:n in [1..20]]; // Marius A. Burtea, Feb 17 2020
-
Table[(1/n) Sum[n^(n/GCD[n, k]), {k, 1, n}], {n, 1, 19}]
Table[(1/n) Sum[EulerPhi[d] n^d, {d, Divisors[n]}], {n, 1, 19}]
Table[SeriesCoefficient[Sum[Sum[EulerPhi[j] n^(j - 1) x^(k j), {j, 1, n}], {k, 1, n}], {x, 0, n}], {n, 1, 19}]
-
a(n) = sum(k=1, n, n^(n/gcd(n, k)))/n; \\ Michel Marcus, Mar 10 2021
A321349
a(n) = Sum_{d|n} phi(d^n), where phi() is the Euler totient function (A000010).
Original entry on oeis.org
1, 3, 19, 137, 2501, 16071, 705895, 8421505, 258293449, 4007813013, 259374246011, 2972767821815, 279577021469773, 4762869973595499, 233543432626753439, 9223512776490647553, 778579070010669895697, 13115569455375954492093, 1874292305362402347591139
Offset: 1
-
Table[Sum[EulerPhi[d^n], {d, Divisors[n]}], {n, 19}]
nmax = 19; Rest[CoefficientList[Series[Sum[k^(k - 1) EulerPhi[k] x^k/(1 - (k x)^k), {k, 1, nmax}], {x, 0, nmax}], x]]
Table[Sum[(n/GCD[n, k])^(n - 1), {k, n}], {n, 19}]
-
a(n) = sumdiv(n, d, eulerphi(d^n)); \\ Michel Marcus, Nov 06 2018
A332620
a(n) = Sum_{k=1..n} n^(n/gcd(n, k)).
Original entry on oeis.org
1, 6, 57, 532, 12505, 93786, 4941265, 67117128, 2324524401, 40000400110, 2853116706121, 35664407810076, 3634501279107049, 66672041585829330, 3503151123049919265, 147573952606856413456, 13235844190181388226849, 236078448452969449231206, 35611553801885644604231641
Offset: 1
-
[&+[n^(n div Gcd(n,k)):k in [1..n]]:n in [1..20]]; // Marius A. Burtea, Feb 17 2020
-
Table[Sum[n^(n/GCD[n, k]), {k, 1, n}], {n, 1, 19}]
Table[Sum[EulerPhi[d] n^d, {d, Divisors[n]}], {n, 1, 19}]
Table[SeriesCoefficient[Sum[Sum[EulerPhi[j] n^j x^(k j), {j, 1, n}], {k, 1, n}], {x, 0, n}], {n, 1, 19}]
-
a(n) = sum(k=1, n, n^(n/gcd(n, k))); \\ Michel Marcus, Mar 10 2021
A332653
a(n) = (1/n) * Sum_{k=1..n} n^(k/gcd(n, k)).
Original entry on oeis.org
1, 2, 5, 19, 157, 1306, 19609, 266372, 5321721, 101001214, 2593742461, 61920391842, 1941507093541, 56984643437138, 2076518238897649, 72340172854919941, 3041324492229179281, 121440691499123469858, 5784852794328402307381, 262799364106291328009626
Offset: 1
-
[(1/n)*&+[n^(k div Gcd(n,k)):k in [1..n]]:n in [1..21]]; // Marius A. Burtea, Feb 18 2020
-
Table[(1/n) Sum[n^(k/GCD[n, k]), {k, 1, n}], {n, 1, 20}]
Table[Sum[Sum[If[GCD[k, d] == 1, n^(k - 1), 0], {k, 1, d}], {d, Divisors[n]}], {n, 1, 20}]
A332655
a(n) = Sum_{k=1..n} (k/gcd(n, k))^n.
Original entry on oeis.org
1, 2, 10, 84, 1301, 15693, 376762, 6168552, 176787631, 3770427352, 142364319626, 3152758480715, 154718778284149, 4340093860950619, 210971170836848270, 7281694486114555088, 435659030617933827137, 14181121059071691716406, 1052864393300587929716722, 41673907052879908244100770
Offset: 1
-
[&+[(k div Gcd(n,k))^n:k in [1..n]]:n in [1..20]]; // Marius A. Burtea, Feb 18 2020
-
Table[Sum[(k/GCD[n, k])^n, {k, 1, n}], {n, 1, 20}]
Table[Sum[Sum[If[GCD[k, d] == 1, k^n, 0], {k, 1, d}], {d, Divisors[n]}], {n, 1, 20}]
A332652
a(n) = Sum_{k=1..n} n^(k/gcd(n, k)).
Original entry on oeis.org
1, 4, 15, 76, 785, 7836, 137263, 2130976, 47895489, 1010012140, 28531167071, 743044702104, 25239592216033, 797785008119932, 31147773583464735, 1157442765678719056, 51702516367896047777, 2185932446984222457444, 109912203092239643840239, 5255987282125826560192520
Offset: 1
-
[&+[n^(k div Gcd(n,k)):k in [1..n]]:n in [1..21]]; // Marius A. Burtea, Feb 18 2020
-
Table[Sum[n^(k/GCD[n, k]), {k, 1, n}], {n, 1, 20}]
Table[Sum[Sum[If[GCD[k, d] == 1, n^k, 0], {k, 1, d}], {d, Divisors[n]}], {n, 1, 20}]
A342412
a(n) = Sum_{k=1..n} (n/gcd(k,n))^(n-2).
Original entry on oeis.org
1, 2, 7, 37, 501, 2771, 100843, 1056833, 28702189, 401562757, 23579476911, 247792605523, 21505924728445, 340246521979079, 15569565432876147, 576478345026355201, 45798768824157052689, 728648310343004595593, 98646963440126439346903
Offset: 1
-
a[n_] := Sum[(n/GCD[k, n])^(n - 2), {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Mar 11 2021 *)
-
a(n) = sum(k=1, n, (n/gcd(k, n))^(n-2));
-
a(n) = sumdiv(n, d, eulerphi(d^(n-1)));
-
a(n) = sumdiv(n, d, eulerphi(d)*d^(n-2));
-
my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k^(k-1))*x^k/(1-(k*x)^k)))
Showing 1-10 of 10 results.
Comments