cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A226561 a(n) = Sum_{d|n} d^n * phi(d), where phi(n) is the Euler totient function A000010(n).

Original entry on oeis.org

1, 5, 55, 529, 12501, 94835, 4941259, 67240193, 2324562301, 40039063525, 2853116706111, 35668789979107, 3634501279107037, 66676110291801575, 3503151245145885315, 147575078498173255681, 13235844190181388226833, 236079349222711695887225, 35611553801885644604231623
Offset: 1

Views

Author

Paul D. Hanna, Jun 10 2013

Keywords

Comments

Compare formula to the identity: Sum_{d|n} phi(d) = n.

Examples

			L.g.f.: L(x) = x + 5*x^2/2 + 55*x^3/3 + 529*x^4/4 + 12501*x^5/5 + 94835*x^6/6 + ...
where
exp(L(x)) = 1 + x + 3*x^2 + 21*x^3 + 155*x^4 + 2691*x^5 + 18924*x^6 + 732230*x^7 + 9223166*x^8 + ... + A226560(n)*x^n + ...
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  (&+[EulerPhi(k)*(k*x)^k/(1-(k*x)^k): k in [1..2*m]]) )); // G. C. Greubel, Nov 07 2018
    
  • Maple
    f:= n -> add(d^n * numtheory:-phi(d), d = numtheory:-divisors(n)):
    map(f, [$1..40]); # Robert Israel, Jun 16 2017
  • Mathematica
    Table[DivisorSum[n, #*EulerPhi[#^n]  &], {n, 1, 30}]  (* or *) With[{nmax = 30}, Rest[CoefficientList[Series[Sum[EulerPhi[k]*(k*x)^k/(1 - (k*x)^k), {k, 1, 2*nmax}], {x, 0, nmax}], x]]]  (* G. C. Greubel, Nov 07 2018 *)
  • PARI
    {a(n)=sumdiv(n, d, d^n*eulerphi(d))}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    a(n) = sum(k=1, n, (n/gcd(k, n))^n); \\ Seiichi Manyama, Mar 11 2021
    
  • Python
    from sympy import totient, divisors
    def A226561(n):
        return sum(totient(d)*d**n for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020

Formula

Logarithmic derivative of A226560.
a(n) = Sum_{d|n} d * phi(d^n).
a(n) = Sum_{d|n} phi(d^(n+1)).
a(n) = Sum_{d|n} phi(d^(n+2))/d.
a(n) = Sum_{d|n} d^(n-k+1) * phi(d^k) for k >= 1.
G.f.: Sum_{k>=1} phi(k)*(k*x)^k/(1 - (k*x)^k). - Ilya Gutkovskiy, Nov 06 2018
a(n) = Sum_{k=1..n} (n/gcd(k,n))^n. - Seiichi Manyama, Mar 11 2021
a(n) = Sum_{k=1..n} gcd(n,k)^n*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 10 2021

A342433 a(n) = Sum_{k=1..n} gcd(k,n)^(n-1).

Original entry on oeis.org

1, 3, 11, 74, 629, 8085, 117655, 2113796, 43059849, 1001955177, 25937424611, 743379914746, 23298085122493, 793811662313709, 29192938251553759, 1152956691126550536, 48661191875666868497, 2185928270773974154773
Offset: 1

Views

Author

Seiichi Manyama, Mar 12 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[GCD[k, n]^(n - 1), {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Mar 12 2021 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^(n-1));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*d^(n-1));
    
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, n-2));

Formula

a(n) = Sum_{d|n} phi(n/d) * d^(n-1).
a(n) = Sum_{d|n} mu(n/d) * d * sigma_(n-2)(d).
a(n) ~ n^(n-1). - Vaclav Kotesovec, May 23 2021

A332621 a(n) = (1/n) * Sum_{k=1..n} n^(n/gcd(n, k)).

Original entry on oeis.org

1, 3, 19, 133, 2501, 15631, 705895, 8389641, 258280489, 4000040011, 259374246011, 2972033984173, 279577021469773, 4762288684702095, 233543408203327951, 9223372037928525841, 778579070010669895697, 13115469358498302735067, 1874292305362402347591139
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 17 2020

Keywords

Crossrefs

Programs

  • Magma
    [(1/n)*&+[n^(n div Gcd(n,k)):k in [1..n]]:n in [1..20]]; // Marius A. Burtea, Feb 17 2020
    
  • Mathematica
    Table[(1/n) Sum[n^(n/GCD[n, k]), {k, 1, n}], {n, 1, 19}]
    Table[(1/n) Sum[EulerPhi[d] n^d, {d, Divisors[n]}], {n, 1, 19}]
    Table[SeriesCoefficient[Sum[Sum[EulerPhi[j] n^(j - 1) x^(k j), {j, 1, n}], {k, 1, n}], {x, 0, n}], {n, 1, 19}]
  • PARI
    a(n) = sum(k=1, n, n^(n/gcd(n, k)))/n; \\ Michel Marcus, Mar 10 2021

Formula

a(n) = [x^n] Sum_{k>=1} Sum_{j>=1} phi(j) * n^(j-1) * x^(k*j).
a(n) = (1/n) * Sum_{k=1..n} n^(lcm(n, k)/k).
a(n) = (1/n) * Sum_{d|n} phi(d) * n^d.
a(n) = A332620(n) / n.

A332620 a(n) = Sum_{k=1..n} n^(n/gcd(n, k)).

Original entry on oeis.org

1, 6, 57, 532, 12505, 93786, 4941265, 67117128, 2324524401, 40000400110, 2853116706121, 35664407810076, 3634501279107049, 66672041585829330, 3503151123049919265, 147573952606856413456, 13235844190181388226849, 236078448452969449231206, 35611553801885644604231641
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 17 2020

Keywords

Crossrefs

Programs

  • Magma
    [&+[n^(n div Gcd(n,k)):k in [1..n]]:n in [1..20]]; // Marius A. Burtea, Feb 17 2020
    
  • Mathematica
    Table[Sum[n^(n/GCD[n, k]), {k, 1, n}], {n, 1, 19}]
    Table[Sum[EulerPhi[d] n^d, {d, Divisors[n]}], {n, 1, 19}]
    Table[SeriesCoefficient[Sum[Sum[EulerPhi[j] n^j x^(k j), {j, 1, n}], {k, 1, n}], {x, 0, n}], {n, 1, 19}]
  • PARI
    a(n) = sum(k=1, n, n^(n/gcd(n, k))); \\ Michel Marcus, Mar 10 2021

Formula

a(n) = [x^n] Sum_{k>=1} Sum_{j>=1} phi(j) * n^j * x^(k*j).
a(n) = Sum_{k=1..n} n^(lcm(n, k)/k).
a(n) = Sum_{d|n} phi(d) * n^d.
a(n) = n * A332621(n).

A342412 a(n) = Sum_{k=1..n} (n/gcd(k,n))^(n-2).

Original entry on oeis.org

1, 2, 7, 37, 501, 2771, 100843, 1056833, 28702189, 401562757, 23579476911, 247792605523, 21505924728445, 340246521979079, 15569565432876147, 576478345026355201, 45798768824157052689, 728648310343004595593, 98646963440126439346903
Offset: 1

Views

Author

Seiichi Manyama, Mar 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(n/GCD[k, n])^(n - 2), {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Mar 11 2021 *)
  • PARI
    a(n) = sum(k=1, n, (n/gcd(k, n))^(n-2));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d^(n-1)));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*d^(n-2));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k^(k-1))*x^k/(1-(k*x)^k)))

Formula

a(n) = Sum_{d|n} phi(d^(n-1)) = Sum_{d|n} phi(d) * d^(n-2).
G.f.: Sum_{k>=1} phi(k^(k-1))*x^k/(1 - (k*x)^k).
Showing 1-5 of 5 results.