cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A342433 a(n) = Sum_{k=1..n} gcd(k,n)^(n-1).

Original entry on oeis.org

1, 3, 11, 74, 629, 8085, 117655, 2113796, 43059849, 1001955177, 25937424611, 743379914746, 23298085122493, 793811662313709, 29192938251553759, 1152956691126550536, 48661191875666868497, 2185928270773974154773
Offset: 1

Views

Author

Seiichi Manyama, Mar 12 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[GCD[k, n]^(n - 1), {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Mar 12 2021 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^(n-1));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*d^(n-1));
    
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, n-2));

Formula

a(n) = Sum_{d|n} phi(n/d) * d^(n-1).
a(n) = Sum_{d|n} mu(n/d) * d * sigma_(n-2)(d).
a(n) ~ n^(n-1). - Vaclav Kotesovec, May 23 2021

A332620 a(n) = Sum_{k=1..n} n^(n/gcd(n, k)).

Original entry on oeis.org

1, 6, 57, 532, 12505, 93786, 4941265, 67117128, 2324524401, 40000400110, 2853116706121, 35664407810076, 3634501279107049, 66672041585829330, 3503151123049919265, 147573952606856413456, 13235844190181388226849, 236078448452969449231206, 35611553801885644604231641
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 17 2020

Keywords

Crossrefs

Programs

  • Magma
    [&+[n^(n div Gcd(n,k)):k in [1..n]]:n in [1..20]]; // Marius A. Burtea, Feb 17 2020
    
  • Mathematica
    Table[Sum[n^(n/GCD[n, k]), {k, 1, n}], {n, 1, 19}]
    Table[Sum[EulerPhi[d] n^d, {d, Divisors[n]}], {n, 1, 19}]
    Table[SeriesCoefficient[Sum[Sum[EulerPhi[j] n^j x^(k j), {j, 1, n}], {k, 1, n}], {x, 0, n}], {n, 1, 19}]
  • PARI
    a(n) = sum(k=1, n, n^(n/gcd(n, k))); \\ Michel Marcus, Mar 10 2021

Formula

a(n) = [x^n] Sum_{k>=1} Sum_{j>=1} phi(j) * n^j * x^(k*j).
a(n) = Sum_{k=1..n} n^(lcm(n, k)/k).
a(n) = Sum_{d|n} phi(d) * n^d.
a(n) = n * A332621(n).

A332653 a(n) = (1/n) * Sum_{k=1..n} n^(k/gcd(n, k)).

Original entry on oeis.org

1, 2, 5, 19, 157, 1306, 19609, 266372, 5321721, 101001214, 2593742461, 61920391842, 1941507093541, 56984643437138, 2076518238897649, 72340172854919941, 3041324492229179281, 121440691499123469858, 5784852794328402307381, 262799364106291328009626
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 18 2020

Keywords

Crossrefs

Programs

  • Magma
    [(1/n)*&+[n^(k div Gcd(n,k)):k in [1..n]]:n in [1..21]]; // Marius A. Burtea, Feb 18 2020
  • Mathematica
    Table[(1/n) Sum[n^(k/GCD[n, k]), {k, 1, n}], {n, 1, 20}]
    Table[Sum[Sum[If[GCD[k, d] == 1, n^(k - 1), 0], {k, 1, d}], {d, Divisors[n]}], {n, 1, 20}]

Formula

a(n) = (1/n) * Sum_{k=1..n} n^(lcm(n, k)/n).
a(n) = Sum_{d|n} Sum_{k=1..d, gcd(k, d) = 1} n^(k-1).
a(n) = A332652(n) / n.

A332655 a(n) = Sum_{k=1..n} (k/gcd(n, k))^n.

Original entry on oeis.org

1, 2, 10, 84, 1301, 15693, 376762, 6168552, 176787631, 3770427352, 142364319626, 3152758480715, 154718778284149, 4340093860950619, 210971170836848270, 7281694486114555088, 435659030617933827137, 14181121059071691716406, 1052864393300587929716722, 41673907052879908244100770
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 18 2020

Keywords

Crossrefs

Programs

  • Magma
    [&+[(k div Gcd(n,k))^n:k in [1..n]]:n in [1..20]]; // Marius A. Burtea, Feb 18 2020
  • Mathematica
    Table[Sum[(k/GCD[n, k])^n, {k, 1, n}], {n, 1, 20}]
    Table[Sum[Sum[If[GCD[k, d] == 1, k^n, 0], {k, 1, d}], {d, Divisors[n]}], {n, 1, 20}]

Formula

a(n) = Sum_{k=1..n} (lcm(n, k)/n)^n.
a(n) = Sum_{d|n} Sum_{k=1..d, gcd(k, d) = 1} k^n.

A332652 a(n) = Sum_{k=1..n} n^(k/gcd(n, k)).

Original entry on oeis.org

1, 4, 15, 76, 785, 7836, 137263, 2130976, 47895489, 1010012140, 28531167071, 743044702104, 25239592216033, 797785008119932, 31147773583464735, 1157442765678719056, 51702516367896047777, 2185932446984222457444, 109912203092239643840239, 5255987282125826560192520
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 18 2020

Keywords

Crossrefs

Programs

  • Magma
    [&+[n^(k div Gcd(n,k)):k in [1..n]]:n in [1..21]]; // Marius A. Burtea, Feb 18 2020
  • Mathematica
    Table[Sum[n^(k/GCD[n, k]), {k, 1, n}], {n, 1, 20}]
    Table[Sum[Sum[If[GCD[k, d] == 1, n^k, 0], {k, 1, d}], {d, Divisors[n]}], {n, 1, 20}]

Formula

a(n) = Sum_{k=1..n} n^(lcm(n, k)/n).
a(n) = Sum_{d|n} Sum_{k=1..d, gcd(k, d) = 1} n^k.
a(n) = n * A332653(n).

A342396 a(n) = Sum_{k=1..n} k^(n/gcd(k,n) - 1).

Original entry on oeis.org

1, 2, 6, 31, 355, 3150, 67172, 904085, 22998481, 427799450, 14914341926, 287337926355, 13421957361111, 339940911160914, 15434209582905140, 493467700905592777, 28101527071305611529, 836396358233559195382
Offset: 1

Views

Author

Seiichi Manyama, Mar 10 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[k^(n/GCD[k, n] - 1), {k, 1, n}]; Array[a, 18] (* Amiram Eldar, Mar 10 2021 *)
  • PARI
    a(n) = sum(k=1, n, k^(n/gcd(k, n)-1));

Formula

If p is prime, a(p) = A031971(p-1) + 1.
Showing 1-6 of 6 results.