cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319086 a(n) = Sum_{k=1..n} k^2*sigma(k), where sigma is A000203.

Original entry on oeis.org

1, 13, 49, 161, 311, 743, 1135, 2095, 3148, 4948, 6400, 10432, 12798, 17502, 22902, 30838, 36040, 48676, 55896, 72696, 86808, 104232, 116928, 151488, 170863, 199255, 228415, 272319, 297549, 362349, 393101, 457613, 509885, 572309, 631109, 749045, 801067
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 10 2018

Keywords

Comments

In general, for m>=1, Sum_{k=1..n} k^m * sigma(k) = Sum_{k=1..n} k^(m+1) * (Bernoulli(m+1, floor(1 + n/k)) - Bernoulli(m+1, 0)) / (m+1), where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 08 2018

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[k^2*DivisorSigma[1, k], {k, 1, 50}]]
  • PARI
    a(n) = sum(k=1, n, k^2*sigma(k)); \\ Michel Marcus, Sep 12 2018
    
  • Python
    def A319086(n): return sum((k*(m:=n//k)*(m+1)>>1)**2 for k in range(1,n+1)) # Chai Wah Wu, Oct 20 2023
    
  • Python
    from math import isqrt
    def A319086(n): return ((-((s:=isqrt(n))*(s+1))**3*(2*s+1)>>1) + sum(k**2*(q:=n//k)*(q+1)*(2*k*(2*q+1)+3*q*(q+1)) for k in range(1,s+1)))//12 # Chai Wah Wu, Oct 21 2023

Formula

a(n) ~ Pi^2 * n^4/24.
a(n) = Sum_{k=1..n} ((k/2) * floor(n/k) * floor(1 + n/k))^2. - Daniel Suteu, Nov 07 2018