A319086 a(n) = Sum_{k=1..n} k^2*sigma(k), where sigma is A000203.
1, 13, 49, 161, 311, 743, 1135, 2095, 3148, 4948, 6400, 10432, 12798, 17502, 22902, 30838, 36040, 48676, 55896, 72696, 86808, 104232, 116928, 151488, 170863, 199255, 228415, 272319, 297549, 362349, 393101, 457613, 509885, 572309, 631109, 749045, 801067
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Accumulate[Table[k^2*DivisorSigma[1, k], {k, 1, 50}]]
-
PARI
a(n) = sum(k=1, n, k^2*sigma(k)); \\ Michel Marcus, Sep 12 2018
-
Python
def A319086(n): return sum((k*(m:=n//k)*(m+1)>>1)**2 for k in range(1,n+1)) # Chai Wah Wu, Oct 20 2023
-
Python
from math import isqrt def A319086(n): return ((-((s:=isqrt(n))*(s+1))**3*(2*s+1)>>1) + sum(k**2*(q:=n//k)*(q+1)*(2*k*(2*q+1)+3*q*(q+1)) for k in range(1,s+1)))//12 # Chai Wah Wu, Oct 21 2023
Formula
a(n) ~ Pi^2 * n^4/24.
a(n) = Sum_{k=1..n} ((k/2) * floor(n/k) * floor(1 + n/k))^2. - Daniel Suteu, Nov 07 2018
Comments