A061502 a(n) = Sum_{k<=n} tau(k)^2, where tau = number of divisors function A000005.
1, 5, 9, 18, 22, 38, 42, 58, 67, 83, 87, 123, 127, 143, 159, 184, 188, 224, 228, 264, 280, 296, 300, 364, 373, 389, 405, 441, 445, 509, 513, 549, 565, 581, 597, 678, 682, 698, 714, 778, 782, 846, 850, 886, 922, 938, 942, 1042, 1051, 1087
Offset: 1
Keywords
References
- R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter II, Problem 56.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..1024
- Adrian Dudek, On the Success of Mishandling Euclid's Lemma, arXiv:1602.03555 [math.HO], 2016. See B(n) p. 2.
- Chaohua Jia and Ayyadurai Sankaranarayanan, The mean square of the divisor function, Acta Arithmetica 164 (2014), 181-208.
- Michaela Cully-Hugill and Timothy Trudgian, Two explicit divisor sums, arXiv:1911.07369 [math.NT], Nov 19 2019
- Vaclav Kotesovec, Graph - The asymptotic ratio (1000000 terms)
- Florian Luca and László Tóth, The r-th moment of the divisor function: an elementary approach, Journal of Integer Sequences 20 (2017), Article 17.7.4, 8 pp.
- Adolf Piltz, Über das Gesetz, nach welchem die mittlere Darstellbarkeit der natürlichen Zahlen als Produkte einer gegebenen Anzahl Faktoren mit der Grösse der Zahlen wächst, 1881.
- Ramanujan's Papers, Some formulas in the analytic theory of numbers, Messenger of Mathematics, XLV, 1916, 81-84, Formula (3).
- D. Suryanarayana and R. Rama Chandra Rao, On an Asymptotic Formula of Ramanujan, Mathematica Scandinavica, 32, 258-264, 1973.
- B. M. Wilson, Proofs of some formulas enunciated by Ramanujan, Proc. London Math. Soc. (2) 21 (1922) 235-255.
Crossrefs
Programs
-
Magma
[&+[NumberOfDivisors(k^2)*Floor(n/k): k in [1..n]]: n in [1..60]]; // Vincenzo Librandi, Sep 10 2016
-
Mathematica
Table[Sum[DivisorSigma[0, k^2]*Floor[n/k], {k, 1, n}], {n, 1, 50}] (* Vaclav Kotesovec, Aug 30 2018 *) Accumulate[Table[DivisorSigma[0, n]^2, {n, 1, 50}]] (* Vaclav Kotesovec, Sep 10 2018 *)
-
PARI
for (n=1, 1024, write("b061502.txt", n, " ", sum(k=1, n, numdiv(k)^2)) ) \\ Harry J. Smith, Jul 23 2009
-
PARI
vector(60, n, sum(k=1, n, numdiv(k)^2)) \\ Michel Marcus, Jul 23 2015
-
PARI
first(n)=my(v=vector(n),s); forfactored(k=1,n, v[k[1]] = s += numdiv(k)^2); v; \\ Charles R Greathouse IV, Nov 28 2018
Formula
a(n) = Sum_{k=1..n} tau(k^2)*floor(n/k).
Asymptotic to A*n*log(n)^3 + B*n*log(n)^2 + C*n*log(n) + D*n + O(n^(1/2+eps)) where A = 1/Pi^2 and B = (12*gamma-3)/Pi^2 - 36*zeta'(2)/Pi^4. [corrected by Vaclav Kotesovec, Aug 30 2018]
C = 36*gamma^2/Pi^2 - (288*z1/Pi^4 + 24/Pi^2)*gamma + (864*z1^2/Pi^6 + 72*z1/Pi^4 - 72/Pi^4*z2 + 6/Pi^2) - 24*g1/Pi^2 and D = 24*gamma^3/Pi^2 - (432*z1 /Pi^4+ 36/Pi^2)*gamma^2 + (3456*z1^2/Pi^6 + 288*(z1-z2)/Pi^4 + 24/Pi^2 - 72*g1/Pi^2)*gamma + g1*(288*z1/Pi^4 + 24/Pi^2)-10368*z1^3/Pi^8 - 864*z1^2/Pi^6 + 1728*z2*z1/Pi^6 + 72*(z2-z1)/Pi^4- 48*z3/Pi^4 + (12*g2-6)/Pi^2, where gamma is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and g1, g2 are the Stieltjes constants, see A082633 and A086279. - Vaclav Kotesovec, Sep 10 2018
See Cully-Hugill & Trudgian, Theorem 2, for an explicit version of the asymptotic given above. - Charles R Greathouse IV, Nov 19 2019
Extensions
Definition corrected by N. J. A. Sloane, May 25 2008
Comments