cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A061502 a(n) = Sum_{k<=n} tau(k)^2, where tau = number of divisors function A000005.

Original entry on oeis.org

1, 5, 9, 18, 22, 38, 42, 58, 67, 83, 87, 123, 127, 143, 159, 184, 188, 224, 228, 264, 280, 296, 300, 364, 373, 389, 405, 441, 445, 509, 513, 549, 565, 581, 597, 678, 682, 698, 714, 778, 782, 846, 850, 886, 922, 938, 942, 1042, 1051, 1087
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2001

Keywords

References

  • R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter II, Problem 56.

Crossrefs

Programs

  • Magma
    [&+[NumberOfDivisors(k^2)*Floor(n/k): k in [1..n]]: n in [1..60]]; // Vincenzo Librandi, Sep 10 2016
  • Mathematica
    Table[Sum[DivisorSigma[0, k^2]*Floor[n/k], {k, 1, n}], {n, 1, 50}] (* Vaclav Kotesovec, Aug 30 2018 *)
    Accumulate[Table[DivisorSigma[0, n]^2, {n, 1, 50}]] (* Vaclav Kotesovec, Sep 10 2018 *)
  • PARI
    for (n=1, 1024, write("b061502.txt", n, " ", sum(k=1, n, numdiv(k)^2)) ) \\ Harry J. Smith, Jul 23 2009
    
  • PARI
    vector(60, n, sum(k=1, n, numdiv(k)^2)) \\ Michel Marcus, Jul 23 2015
    
  • PARI
    first(n)=my(v=vector(n),s); forfactored(k=1,n, v[k[1]] = s += numdiv(k)^2); v; \\ Charles R Greathouse IV, Nov 28 2018
    

Formula

a(n) = Sum_{k=1..n} tau(k^2)*floor(n/k).
Asymptotic to A*n*log(n)^3 + B*n*log(n)^2 + C*n*log(n) + D*n + O(n^(1/2+eps)) where A = 1/Pi^2 and B = (12*gamma-3)/Pi^2 - 36*zeta'(2)/Pi^4. [corrected by Vaclav Kotesovec, Aug 30 2018]
C = 36*gamma^2/Pi^2 - (288*z1/Pi^4 + 24/Pi^2)*gamma + (864*z1^2/Pi^6 + 72*z1/Pi^4 - 72/Pi^4*z2 + 6/Pi^2) - 24*g1/Pi^2 and D = 24*gamma^3/Pi^2 - (432*z1 /Pi^4+ 36/Pi^2)*gamma^2 + (3456*z1^2/Pi^6 + 288*(z1-z2)/Pi^4 + 24/Pi^2 - 72*g1/Pi^2)*gamma + g1*(288*z1/Pi^4 + 24/Pi^2)-10368*z1^3/Pi^8 - 864*z1^2/Pi^6 + 1728*z2*z1/Pi^6 + 72*(z2-z1)/Pi^4- 48*z3/Pi^4 + (12*g2-6)/Pi^2, where gamma is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and g1, g2 are the Stieltjes constants, see A082633 and A086279. - Vaclav Kotesovec, Sep 10 2018
See Cully-Hugill & Trudgian, Theorem 2, for an explicit version of the asymptotic given above. - Charles R Greathouse IV, Nov 19 2019

Extensions

Definition corrected by N. J. A. Sloane, May 25 2008

A245074 Decimal expansion of B, the coefficient of n*log(n)^2 in the asymptotic formula of Ramanujan for Sum_{k=1..n} (d(k)^2), where d(k) is the number of distinct divisors of k.

Original entry on oeis.org

7, 4, 4, 3, 4, 1, 2, 7, 6, 3, 9, 1, 4, 5, 6, 6, 4, 0, 4, 3, 9, 0, 0, 6, 0, 3, 6, 7, 8, 5, 6, 9, 4, 6, 1, 5, 6, 9, 1, 3, 7, 7, 8, 0, 8, 8, 3, 9, 4, 2, 7, 0, 4, 7, 5, 8, 5, 2, 9, 2, 0, 9, 4, 8, 7, 7, 3, 6, 4, 0, 8, 4, 0, 1, 4, 8, 2, 5, 8, 4, 1, 6, 2, 0, 5, 7, 0, 1, 9, 8, 7, 4, 8, 8, 7, 1, 8, 5, 0, 0, 9, 4, 5
Offset: 0

Views

Author

Jean-François Alcover, Jul 11 2014

Keywords

Comments

The coefficient of n*log(n)^3 in the same asymptotic formula is A = 1/Pi^2.

Examples

			0.744341276391456640439006036785694615691377808839427047585292094877364...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section Sierpinski's Constant, p. 124.

Crossrefs

Programs

  • Mathematica
    B = (12*EulerGamma - 3)/Pi^2 - (36/Pi^4)*Zeta'[2]; RealDigits[B, 10, 103] // First
  • PARI
    (4*Euler-1)/(2*zeta(2)) - zeta'(2)/zeta(2)^2 \\ Amiram Eldar, Apr 27 2025

Formula

B = (12*gamma - 3)/Pi^2 - (36/Pi^4)*zeta'(2).

A319090 Decimal expansion of C, the coefficient of n*log(n) in the asymptotic formula of Ramanujan for Sum_{k=1..n} (d(k)^2), where d(k) is the number of distinct divisors of k.

Original entry on oeis.org

8, 2, 3, 2, 6, 5, 2, 0, 8, 2, 6, 9, 4, 8, 5, 0, 2, 0, 1, 5, 6, 8, 1, 6, 4, 5, 3, 9, 4, 7, 0, 9, 0, 4, 0, 6, 3, 0, 1, 2, 7, 3, 2, 7, 0, 3, 2, 1, 1, 4, 2, 2, 5, 0, 8, 9, 2, 5, 2, 4, 5, 7, 9, 2, 0, 8, 5, 3, 0, 3, 9, 5, 9, 7, 1, 7, 5, 5, 0, 4, 2, 1, 8, 1, 7, 0, 8, 2, 1, 3, 3, 7, 2, 4, 6, 9, 7, 7, 1, 2, 8, 2, 3, 0, 2, 3
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 10 2018

Keywords

Examples

			0.823265208269485020156816453947090406301273270321142250892524579208530395971755...
		

Crossrefs

Programs

  • Mathematica
    36*EulerGamma^2/Pi^2 - (288*Zeta'[2]/Pi^4 + 24/Pi^2)*EulerGamma + (864*Zeta'[2]^2/Pi^6 + 72*Zeta'[2]/Pi^4 - 72/Pi^4*Zeta''[2] + 6/Pi^2) - 24*StieltjesGamma[1]/Pi^2

Formula

C = 36*gamma^2/Pi^2 - (288*z1/Pi^4 + 24/Pi^2)*gamma + (864*z1^2/Pi^6 + 72*z1/Pi^4 - 72/Pi^4*z2 + 6/Pi^2) - 24*g1/Pi^2, where gamma is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994 and g1 is the first Stieltjes constant, see A082633.
Showing 1-3 of 3 results.