A319096 Number of nonequivalent ways to place n^2 nonattacking kings on a 2n X 2n chessboard under all symmetry operations of the square.
1, 14, 459, 35312, 4072108, 638653285, 128441726634, 31872148398195, 9490641145219266, 3321018871480028710
Offset: 1
Examples
For n = 2 there are a(2) = 14 distinct solutions from 79 that will not be repeated at all possible turns and reflections. ------------ 1. 2. _________________ _________________ | * | | * | | | * | | * | | | | | | | | | | | | | * | | * | | | * | | | * | | | | | | | | | | | ------------ 3. 4. _________________ _________________ | * | | * | | | * | | * | | | | | | | | | | | | | * | | | | | | * | | * | | | | | * | | | | | | ------------ 5. 6. _________________ _________________ | * | | * | | | * | | * | | | | | | | | | | | | | | * | | | | | | * | | | | | | * | | * | | | | ------------ 7. 8. _________________ _________________ | * | | * | | | * | | * | | | | | | | | | | | | | | | | * | | | | | | | * | | | | | * | | * | | ------------ 9. 10. _________________ _________________ | * | | * | | | * | | * | | | | | | | | | | | | | | | | | | | | | * | | * | | | * | | | * | | | ------------ 11. 12. _________________ _________________ | * | | * | | | * | | | * | | | | | | | | | | | | | | | | | | * | | | | | * | | * | | | | | * | ------------ 13. 14. _________________ _________________ | * | | | * | | | * | | | | | | | | | | | | * | | | | | | | * | | | | | * | | | * | | | | * | | ------------
Crossrefs
Formula
a(n) = A236679(2n+1, n^2).
Extensions
a(4)-a(10) from Andrew Howroyd, Dec 21 2018
Comments