cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A334370 Expansion of e.g.f. Product_{k>=1} (1 + x^prime(k) / prime(k)!).

Original entry on oeis.org

1, 0, 1, 1, 0, 11, 0, 22, 56, 36, 2640, 1, 8712, 79, 72436, 360465, 48608, 49008961, 794376, 4232764, 7753140, 942565890, 18198334, 14799637777, 10577976, 366619314900, 2785137222400, 1475339135400, 1065920156634060, 3765722000041, 5869315258699050
Offset: 0

Views

Author

Ilya Gutkovskiy, May 11 2020

Keywords

Comments

a(n) is the number of functions f:[n]-> [n] such that the number of elements that are mapped to i is either 0 or the i-th prime. a(5) = 11: (33333), (11222), (12122), (12212), (12221), (21122), (21212), (21221), (22112), (22121), (22211). - Alois P. Heinz, Jul 18 2023

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+
          (p-> `if`(p>n, 0, b(n-p, i-1)*binomial(n, p)))(ithprime(i))))
        end:
    a:= n-> b(n, numtheory[pi](n)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 18 2023
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + x^Prime[k]/Prime[k]!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[DivisorSum[k, -#/(-#!)^(k/#) &, PrimeQ[#] &] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 30}]
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, 1+isprime(k)*x^k/k!))) \\ Seiichi Manyama, Feb 27 2022

A319112 Expansion of e.g.f. Product_{k>=1} 1/(1 - x^prime(k)/prime(k)).

Original entry on oeis.org

1, 0, 1, 2, 6, 44, 170, 1644, 7448, 72624, 653112, 8510160, 62704752, 1324662624, 10772812752, 167386388064, 2413326453120, 52610523489024, 597065112874368, 18066985168806144, 212119023906342144, 4734822914239173120, 100734270778298352384, 2818116390408742291968, 48201015565806837709824
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 10 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(mul(1/(1-x^ithprime(k)/ithprime(k)),k=1..100),x=0,25),x,n),n=0..24); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 24; CoefficientList[Series[Product[1/(1 - x^Prime[k]/Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 24; CoefficientList[Series[Exp[Sum[Sum[Boole[PrimeQ[d]] d^(1 - k/d), {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[Sum[Boole[PrimeQ[d]] d^(1 - k/d), {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 24}]
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, 1-isprime(k)*x^k/k))) \\ Seiichi Manyama, Feb 27 2022

Formula

E.g.f.: exp(Sum_{k>=1} ( Sum_{p|k, p prime} p^(1-k/p) ) * x^k/k).
Showing 1-2 of 2 results.