A319120 T(n, k) = binomial(n - k - 1, k)*binomial(2*n - 2*k, n)/(n + 1), for n >= 1 and 0 <= k <= floor((n - 1)/2), triangle read by rows.
1, 2, 5, 1, 14, 6, 42, 28, 1, 132, 120, 12, 429, 495, 90, 1, 1430, 2002, 550, 20, 4862, 8008, 3003, 220, 1, 16796, 31824, 15288, 1820, 30, 58786, 125970, 74256, 12740, 455, 1, 208012, 497420, 348840, 79968, 4900, 42
Offset: 1
Examples
Triangle begins: 1; 2; 5, 1; 14, 6; 42, 28, 1; 132, 120, 12; 429, 495, 90, 1; 1430, 2002, 550, 20; 4862, 8008, 3003, 220, 1; 16796, 31824, 15288, 1820, 30; 58786, 125970, 74256, 12740, 455, 1; 208012, 497420, 348840, 79968, 4900, 42; ...
Links
- Colin Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
Programs
-
Mathematica
Flatten[Table[Table[(1/(n + 1)) Binomial[n - k - 1, k] Binomial[2 n - 2 k, n], {k, 0, Floor[(n - 1)/2]}], {n, 1, 12}]]
-
PARI
T(n,k) = binomial(n-k-1,k) * binomial(2*n-2*k,n)/(n+1); tabf(nn) = for (n=1, nn, for (k=0, (n-1)\2, print1(T(n,k), ", ")); print); \\ Michel Marcus, Sep 20 2018
Comments