cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A319436 Number of palindromic plane trees with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 35, 68, 122, 234, 426, 808, 1484, 2798, 5167, 9700, 17974, 33656, 62498, 116826, 217236, 405646, 754938, 1408736, 2623188, 4892848, 9114036, 16995110, 31664136, 59034488, 110004243, 205068892, 382156686, 712363344, 1327600346, 2474618434
Offset: 1

Views

Author

Gus Wiseman, Sep 18 2018

Keywords

Comments

A rooted plane tree is palindromic if the sequence of branches directly under any given node is a palindrome.

Examples

			The a(7) = 20 palindromic plane trees:
  ((((((o))))))  (((((oo)))))  ((((ooo))))  (((oooo)))  ((ooooo))  (oooooo)
                 ((((o)(o))))  (((o(o)o)))  ((o(oo)o))  (o(ooo)o)
                 (((o))((o)))  ((o((o))o))  (o((oo))o)  (oo(o)oo)
                               (((o)o(o)))  ((oo)(oo))
                               (o(((o)))o)  ((o)oo(o))
                               ((o)(o)(o))  (o(o)(o)o)
		

Crossrefs

Programs

  • Mathematica
    panplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[panplane/@c],#==Reverse[#]&],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[panplane[n]],{n,10}]
  • PARI
    PAL(p)={(1+p)/subst(1-p, x, x^2)}
    seq(n)={my(p=O(1));for(i=1, n, p=PAL(x*p)); Vec(p)} \\ Andrew Howroyd, Sep 19 2018

Formula

a(n) ~ c * d^n, where d = 1.86383559155190653688720443906758855085492625375... and c = 0.24457511051198663873739022949952908293770055... - Vaclav Kotesovec, Nov 16 2021

A277130 Number of planar branching factorizations of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 6, 2, 3, 1, 14, 1, 3, 3, 24, 1, 14, 1, 14, 3, 3, 1, 78, 2, 3, 6, 14, 1, 25, 1, 112, 3, 3, 3, 110, 1, 3, 3, 78, 1, 25, 1, 14, 14, 3, 1, 464, 2, 14, 3, 14, 1, 78, 3, 78, 3, 3, 1, 206, 1, 3, 14, 568, 3, 25, 1, 14, 3, 25, 1, 850, 1, 3, 14, 14
Offset: 1

Views

Author

Michel Marcus, Oct 01 2016

Keywords

Comments

A planar branching factorization of n is either the number n itself or a sequence of at least two planar branching factorizations, one of each factor in an ordered factorization of n. - Gus Wiseman, Sep 11 2018

Examples

			From _Gus Wiseman_, Sep 11 2018: (Start)
The a(12) = 14 planar branching factorizations:
  12,
  (2*6), (3*4), (4*3), (6*2), (2*2*3), (2*3*2), (3*2*2),
  (2*(2*3)), (2*(3*2)), (3*(2*2)), ((2*2)*3), ((2*3)*2), ((3*2)*2).
(End)
		

Crossrefs

Programs

  • C
    #include 
    #include 
    #include 
    #define MAX 10000
    /* Number of planar branching factorizations of n. */
    #define lu unsigned long
    lu nbr[MAX]; /* number of branching */
    lu a, b, d, e; /* temporary variables */
    lu n; lu m, p; // factors of n
    lu x; // square root of n
    void main(unsigned argc, char *argv[])
    {
      memset(nbr, 0, MAX*sizeof(lu));
      for (b=0, n=1; nDaniel Mondot, May 19 2017 */
  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]
    otfs[n_]:=Prepend[Join@@Table[Tuples[otfs/@f],{f,Select[ordfacs[n],Length[#]>1&]}],n];
    Table[Length[otfs[n]],{n,20}] (* Gus Wiseman, Sep 11 2018 *)

Formula

a(prime^n) = A118376(n). a(product of n distinct primes) = A319122(n). - Gus Wiseman, Sep 11 2018

Extensions

Terms a(65) and beyond from Daniel Mondot, May 19 2017

A319379 Number of plane trees with n nodes where the sequence of branches directly under any given node is a chain of multisets.

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 43, 93, 207, 452, 997, 2176, 4776, 10418, 22781, 49674, 108421
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2018

Keywords

Examples

			The a(6) = 19 chain trees:
  (((((o)))))  ((((oo))))  (((ooo)))  ((oooo))  (ooooo)
               (((o)(o)))  ((o)(oo))  (o(ooo))
               (((o(o))))  ((o(oo)))  (oo(oo))
               ((o((o))))  ((oo(o)))  (ooo(o))
               (o(((o))))  (o((oo)))
                           (o(o)(o))
                           (o(o(o)))
                           (oo((o)))
		

Crossrefs

Programs

  • Mathematica
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    chnplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[chnplane/@c],And@@submultisetQ@@@Partition[#,2,1]&],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[chnplane[n]],{n,10}]

A319380 Number of plane trees with n nodes where the sequence of branches directly under any given node is a chain of distinct multisets.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 17, 30, 53, 94, 169, 303, 543, 968, 1728, 3080, 5491, 9776, 17415, 31008
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2018

Keywords

Examples

			The a(8) = 17 locally identity chain trees:
  (((((((o)))))))  (((((o(o))))))  (((o(o(o)))))  (o(o(o(o))))
                   ((((o((o))))))  ((o((o(o)))))  (o(o)(o(o)))
                   (((o(((o))))))  ((o(o((o)))))
                   ((o((((o))))))  (((o)(o(o))))
                   (o(((((o))))))  (o(((o(o)))))
                                   (o((o((o)))))
                                   (o(o(((o)))))
                                   ((o)(o((o))))
                                   (((o))(o(o)))
		

Crossrefs

Programs

  • Mathematica
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    idchnplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[idchnplane/@c],And[UnsameQ@@#,And@@submultisetQ@@@Partition[#,2,1]]&],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[idchnplane[n]],{n,10}]

A319381 Number of plane trees with n nodes where the sequence of branches directly under any given node is a membership-chain.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 6, 9, 11, 20, 28, 40, 58, 82, 110, 159, 217, 305, 420, 570, 767, 1042
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2018

Keywords

Examples

			The a(9) = 11 membership-chain trees:
  ((((((((o))))))))  (((((((o)o))))))  ((((((o)o)o))))  (((((o)o)o)o))
                     ((((((o))(o)))))  (((((o)o)(o))))  ((((o)o)(o)o))
                     (((((o)))((o))))  (((((o))(o)o)))  ((((o))(o)o)o)
                                       ((((o))(o))(o))
		

Crossrefs

Programs

  • Mathematica
    yanplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[yanplane/@c],And@@MemberQ@@@Partition[#,2,1]&],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[yanplane[n]],{n,10}]

A319123 Number of series-reduced plane trees with n leaves such that each branch directly under any given node has a different number of leaves.

Original entry on oeis.org

1, 1, 3, 7, 21, 75, 277, 1083, 4419, 18493, 77729, 332557, 1444477, 6307225, 27912147, 123878207, 554733045, 2492087531, 11280537097, 51120499279, 233319480419, 1065835004917, 4895443823281, 22505853359485, 103958158302085, 480365303903637, 2229412587062123
Offset: 1

Views

Author

Gus Wiseman, Sep 11 2018

Keywords

Examples

			The a(4) = 7 plane trees:
  (oooo)
  (o(ooo))
  ((ooo)o)
  (o(o(oo)))
  (o((oo)o))
  ((o(oo))o)
  (((oo)o)o)
		

Crossrefs

Programs

  • Mathematica
    b[n_]:=b[n]=1+Sum[Times@@b/@f,{f,Join@@Permutations/@Select[IntegerPartitions[n],And[Length[#]>1,UnsameQ@@#]&]}];
    Array[b,30]

A319137 Number of strict planar branching factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 9, 1, 3, 3, 7, 1, 9, 1, 9, 3, 3, 1, 37, 1, 3, 3, 9, 1, 25, 1, 21, 3, 3, 3, 57, 1, 3, 3, 37, 1, 25, 1, 9, 9, 3, 1, 161, 1, 9, 3, 9, 1, 37, 3, 37, 3, 3, 1, 153, 1, 3, 9, 75, 3, 25, 1, 9, 3, 25, 1, 345, 1, 3, 9, 9, 3, 25, 1, 161
Offset: 1

Views

Author

Gus Wiseman, Sep 11 2018

Keywords

Comments

A strict planar branching factorization of n is either the number n itself or a sequence of at least two strict planar branching factorizations, one of each factor in a strict ordered factorization of n.

Examples

			The a(12) = 9 trees:
  12,
  (2*6), (3*4), (4*3),(6*2),
  (2*(2*3)), (2*(3*2)), ((2*3)*2), ((3*2)*2).
		

Crossrefs

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]
    sotfs[n_]:=Prepend[Join@@Table[Tuples[sotfs/@f],{f,Select[ordfacs[n],And[Length[#]>1,UnsameQ@@#]&]}],n];
    Table[Length[sotfs[n]],{n,100}]

Formula

a(prime^n) = A319123(n + 1).
a(product of n distinct primes) = A319122(n).

A319138 Number of complete strict planar branching factorizations of n.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 4, 1, 2, 2, 0, 1, 4, 1, 4, 2, 2, 1, 8, 0, 2, 0, 4, 1, 18, 1, 0, 2, 2, 2, 28, 1, 2, 2, 8, 1, 18, 1, 4, 4, 2, 1, 16, 0, 4, 2, 4, 1, 8, 2, 8, 2, 2, 1, 84, 1, 2, 4, 0, 2, 18, 1, 4, 2, 18, 1, 112, 1, 2, 4, 4, 2, 18, 1, 16, 0, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 11 2018

Keywords

Comments

A strict planar branching factorization of n is either the number n itself or a sequence of at least two strict planar branching factorizations, one of each factor in a strict ordered factorization of n. A strict planar branching factorization is complete if the leaves are all prime numbers.

Examples

			The a(12) = 4 trees: (2*(2*3)), (2*(3*2)), ((2*3)*2), ((3*2)*2).
		

Crossrefs

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]
    sotfs[n_]:=Prepend[Join@@Table[Tuples[sotfs/@f],{f,Select[ordfacs[n],And[Length[#]>1,UnsameQ@@#]&]}],n];
    Table[Length[Select[sotfs[n],FreeQ[#,_Integer?(!PrimeQ[#]&)]&]],{n,100}]

Formula

a(prime^n) = A000007(n - 1).
a(product of n distinct primes) = A032037(n).

A319378 Number of plane trees with n nodes where the sequence of branches directly under any given node with at least two branches has empty intersection.

Original entry on oeis.org

1, 1, 2, 5, 13, 39, 118, 375, 1225, 4079, 13794, 47287, 163962, 573717, 2023800
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2018

Keywords

Examples

			The a(5) = 13 locally nonintersecting plane trees:
  ((((o))))  (((oo)))  ((ooo))  (oooo)
             (((o)o))  ((oo)o)
             ((o(o)))  (o(oo))
             (((o))o)  ((o)oo)
             (o((o)))  (o(o)o)
                       (oo(o))
		

Crossrefs

Programs

  • Mathematica
    monplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[monplane/@c],Or[Length[#]==1,Intersection@@#=={}]&],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[monplane[n]],{n,10}]

A319136 Number of complete planar branching factorizations of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 9, 1, 2, 2, 11, 1, 9, 1, 9, 2, 2, 1, 44, 1, 2, 3, 9, 1, 18, 1, 45, 2, 2, 2, 66, 1, 2, 2, 44, 1, 18, 1, 9, 9, 2, 1, 225, 1, 9, 2, 9, 1, 44, 2, 44, 2, 2, 1, 132, 1, 2, 9, 197, 2, 18, 1, 9, 2, 18, 1, 450, 1, 2, 9, 9, 2, 18, 1, 225
Offset: 1

Views

Author

Gus Wiseman, Sep 11 2018

Keywords

Comments

A planar branching factorization of n is either the number n itself or a sequence of at least two planar branching factorizations, one of each factor in an ordered factorization of n. A planar branching factorization is complete if the leaves are all prime numbers.

Examples

			The a(12) = 9 trees:
  (2*2*3), (2*3*2), (3*2*2),
  (2*(2*3)), (2*(3*2)), (3*(2*2)), ((2*2)*3), ((2*3)*2), ((3*2)*2).
		

Crossrefs

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]
    otfs[n_]:=Prepend[Join@@Table[Tuples[otfs/@f],{f,Select[ordfacs[n],Length[#]>1&]}],n];
    Table[Length[Select[otfs[n],FreeQ[#,_Integer?(!PrimeQ[#]&)]&]],{n,100}]

Formula

a(prime^n) = A001003(n - 1).
a(product of n distinct primes) = A032037(n).
Showing 1-10 of 11 results. Next