A319436 Number of palindromic plane trees with n nodes.
1, 1, 2, 3, 6, 10, 20, 35, 68, 122, 234, 426, 808, 1484, 2798, 5167, 9700, 17974, 33656, 62498, 116826, 217236, 405646, 754938, 1408736, 2623188, 4892848, 9114036, 16995110, 31664136, 59034488, 110004243, 205068892, 382156686, 712363344, 1327600346, 2474618434
Offset: 1
Keywords
Examples
The a(7) = 20 palindromic plane trees: ((((((o)))))) (((((oo))))) ((((ooo)))) (((oooo))) ((ooooo)) (oooooo) ((((o)(o)))) (((o(o)o))) ((o(oo)o)) (o(ooo)o) (((o))((o))) ((o((o))o)) (o((oo))o) (oo(o)oo) (((o)o(o))) ((oo)(oo)) (o(((o)))o) ((o)oo(o)) ((o)(o)(o)) (o(o)(o)o)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- Gus Wiseman, The a(8) = 35 palindromic plane trees.
- Gus Wiseman, The a(11) = 234 palindromic plane trees.
Crossrefs
Programs
-
Mathematica
panplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[panplane/@c],#==Reverse[#]&],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; Table[Length[panplane[n]],{n,10}]
-
PARI
PAL(p)={(1+p)/subst(1-p, x, x^2)} seq(n)={my(p=O(1));for(i=1, n, p=PAL(x*p)); Vec(p)} \\ Andrew Howroyd, Sep 19 2018
Formula
a(n) ~ c * d^n, where d = 1.86383559155190653688720443906758855085492625375... and c = 0.24457511051198663873739022949952908293770055... - Vaclav Kotesovec, Nov 16 2021
Comments