cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319132 a(n) = Sum_{d|n} Sum_{j|d} mu(j)^2*j, where mu = Möbius function (A008683).

Original entry on oeis.org

1, 4, 5, 7, 7, 20, 9, 10, 9, 28, 13, 35, 15, 36, 35, 13, 19, 36, 21, 49, 45, 52, 25, 50, 13, 60, 13, 63, 31, 140, 33, 16, 65, 76, 63, 63, 39, 84, 75, 70, 43, 180, 45, 91, 63, 100, 49, 65, 17, 52, 95, 105, 55, 52, 91, 90, 105, 124, 61, 245, 63, 132, 81, 19, 105, 260, 69, 133, 125, 252
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 11 2018

Keywords

Comments

Inverse Möbius transform of A048250.

Crossrefs

Programs

  • Magma
    [&+[&+[MoebiusMu(j)^2*j:j in Divisors(d)]:d in Divisors(n)]:n in [1..70]]; // Marius A. Burtea, Nov 13 2019
    
  • Magma
    [&+[MoebiusMu(d)^2*d*NumberOfDivisors(n div d):d in Divisors(n)]:n in [1..70]]; // Marius A. Burtea, Nov 13 2019
  • Maple
    with(numtheory): seq(add(mobius(d)^2*d*tau(n/d), d in divisors(n)), n=1..70); # Ridouane Oudra, Nov 13 2019
  • Mathematica
    Table[Sum[Sum[MoebiusMu[j]^2 j, {j, Divisors[d]}], {d, Divisors[n]}], {n, 70}]
    nmax = 70; Rest[CoefficientList[Series[Sum[DivisorSum[k, # &, SquareFreeQ[#] &] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 70; Rest[CoefficientList[Series[-Log[Product[(1 - x^k)^(DivisorSum[k, # &, SquareFreeQ[#] &]/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    f[p_, e_] := (p + 1)*e + 1; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(d)^2*d*numdiv(n/d)); \\ Michel Marcus, Nov 13 2019; corrected Jun 13 2022
    

Formula

G.f.: Sum_{k>=1} A048250(k)*x^k/(1 - x^k).
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(A048250(k)/k)) = Sum_{n>=1} a(n)*x^n/n.
a(p^k) = (p + 1)*k + 1, where p is a prime.
a(n) = Sum_{d|n} mu(d)^2*d*tau(n/d). - Ridouane Oudra, Nov 13 2019
Multiplicative with a(p^e) = (p+1)*e+1. - Amiram Eldar, Oct 25 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/12 = 0.822467... (A072691). - Amiram Eldar, Nov 13 2022
Dirichlet g.f.: zeta(s)^2*zeta(s-1)/zeta(2*s-2). - Amiram Eldar, Jan 03 2023