cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319169 Number of integer partitions of n whose parts all have the same number of prime factors, counted with multiplicity.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 8, 7, 11, 11, 14, 15, 20, 19, 26, 27, 34, 35, 43, 45, 59, 60, 72, 77, 94, 98, 118, 125, 148, 158, 184, 198, 233, 245, 282, 308, 353, 374, 428, 464, 525, 566, 635, 686, 779, 832, 930, 1005, 1123, 1208, 1345, 1451, 1609, 1732, 1912
Offset: 0

Views

Author

Gus Wiseman, Oct 10 2018

Keywords

Examples

			The a(1) = 1 through a(9) = 6 integer partitions:
  1  2   3    4     5      6       7        8         9
     11  111  22    32     33      52       44        72
              1111  11111  222     322      53        333
                           111111  1111111  332       522
                                            2222      3222
                                            11111111  111111111
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, f) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, f)+(o-> `if`(f in {0, o}, b(n-i, min(i, n-i),
         `if`(f=0, o, f)), 0))(numtheory[bigomega](i))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..75);  # Alois P. Heinz, Dec 15 2018
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SameQ@@PrimeOmega/@#&]],{n,30}]
    (* Second program: *)
    b[n_, i_, f_] := b[n, i, f] = If[n == 0, 1, If[i < 1, 0,
         b[n, i-1, f] + Function[o, If[f == 0 || f == o, b[n-i, Min[i, n-i],
         If[f == 0, o, f]], 0]][PrimeOmega[i]]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 75] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Extensions

a(51)-a(58) from Chai Wah Wu, Nov 12 2018