A319169 Number of integer partitions of n whose parts all have the same number of prime factors, counted with multiplicity.
1, 1, 2, 2, 3, 3, 4, 4, 6, 6, 8, 7, 11, 11, 14, 15, 20, 19, 26, 27, 34, 35, 43, 45, 59, 60, 72, 77, 94, 98, 118, 125, 148, 158, 184, 198, 233, 245, 282, 308, 353, 374, 428, 464, 525, 566, 635, 686, 779, 832, 930, 1005, 1123, 1208, 1345, 1451, 1609, 1732, 1912
Offset: 0
Keywords
Examples
The a(1) = 1 through a(9) = 6 integer partitions: 1 2 3 4 5 6 7 8 9 11 111 22 32 33 52 44 72 1111 11111 222 322 53 333 111111 1111111 332 522 2222 3222 11111111 111111111
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2500 (first 101 terms from Chai Wah Wu)
Crossrefs
Programs
-
Maple
b:= proc(n, i, f) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, f)+(o-> `if`(f in {0, o}, b(n-i, min(i, n-i), `if`(f=0, o, f)), 0))(numtheory[bigomega](i)))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..75); # Alois P. Heinz, Dec 15 2018
-
Mathematica
Table[Length[Select[IntegerPartitions[n],SameQ@@PrimeOmega/@#&]],{n,30}] (* Second program: *) b[n_, i_, f_] := b[n, i, f] = If[n == 0, 1, If[i < 1, 0, b[n, i-1, f] + Function[o, If[f == 0 || f == o, b[n-i, Min[i, n-i], If[f == 0, o, f]], 0]][PrimeOmega[i]]]]; a[n_] := b[n, n, 0]; a /@ Range[0, 75] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
Extensions
a(51)-a(58) from Chai Wah Wu, Nov 12 2018