A319171 Square array, read by antidiagonals, upwards: T(n,k) is the number of groups of order prime(k+1)^n.
1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 14, 5, 2, 1, 1, 51, 15, 5, 2, 1, 1, 267, 67, 15, 5, 2, 1, 1, 2328, 504, 77, 15, 5, 2, 1, 1, 56092, 9310, 684, 83, 15, 5, 2, 1, 1, 10494213, 1396077, 34297, 860, 87, 15, 5, 2, 1, 1, 49487367289, 5937876645
Offset: 0
Examples
Array begins: (p = 2) (p = 3) (p = 5) (p = 7) (p = 11) (p = 13) ... 1 1 1 1 1 1 ... 1 1 1 1 1 1 ... 2 2 2 2 2 2 ... 5 5 5 5 5 5 ... 14 15 15 15 15 15 ... 51 67 77 83 87 97 ... 267 504 684 860 1192 1476 ... 2328 9310 34297 113147 750735 1600573 ... ...
Links
- H. U. Besche, B. Eick, and E. A. O'Brien. A Millennium Project: Constructing Small Groups, Internat. J. Algebra and Computation, 12 (2002), 623-644.
- David Burrell, On the number of groups of order 1024, Communications in Algebra, 2021, 1-3.
- David Burrell, The number of p-groups of order 19,683 and new lists of p-groups, Communications in Algebra, Vol. 51 - Issue 6 (2023), 2673-2679.
- Heiko Dietrich, Computational aspects of finite p-groups
- Groupprops, Groups of prime power order
- Groupprops, Higman's PORC conjecture
- Groupprops, PORC function
- Graham Higman, Enumerating p-Groups. I: Inequalities, Proc. London Math. Soc. Vol. 10 (1960), 24-30.
- Graham Higman, Enumerating p-Groups. II: Problem whose solution is PORC, Proc. London Math. Soc. Vol. 10 (1960), 566-582.
- Eamonn O'Brien, Polycyclic groups
- Gordon Royle, Numbers of Small Groups
- Michael Vaughan-Lee, Graham Higman’s PORC Conjecture, Jahresbericht der Deutschen Mathematiker-Vereinigung Vol. 114 (2012), 89-16.
- Michael Vaughan-Lee, Groups of order p^8 and exponent p, International Journal of Group Theory Vol. 4 (2015), 25-42.
- Brett E. Witty, Enumeration of groups of prime-power order, PhD thesis, 2006.
- Index entries for sequences related to groups
Crossrefs
Programs
-
GAP
# This program computes the first 45 terms, rows 0..8. P:=Filtered([1..300],IsPrime);; T1:=List([0..7],n->List([0..15],k->NumberSmallGroups(P[k+1]^n)));; T2:=[Flat(Concatenation(List([8],n->List([0],k->NumberSmallGroups(P[k+1]^n))),List([1..14],i->0)))];; T:=Concatenation(T1,T2);; b:=List([2..10],n->OrderedPartitions(n,2));; a:=Flat(List([1..Length(b)],i->List([1..Length(b[i])],j->T[b[i][j][2]][b[i][j][1]]))); # Muniru A Asiru, Oct 01 2018
-
Maple
with(GroupTheory): T:=proc(n,k) NumGroups(ithprime(k+1)^n); end proc: seq(seq(T(n-k,k),k=0..n),n=0..10); # Muniru A Asiru, Oct 03 2018
-
Mathematica
(* This program uses Higman's PORC functions to compute the rows 0 to 7 *) f[0, p_] := 1; f[1, p_] := 1; f[2, p_] := 2; f[3, p_] := 5; f[4, p_] := If[p == 2, 14, 15]; f[5, p_] := If[p == 2, 51, If[p == 3, 67, 61 + 2*p + 2*GCD[p - 1, 3] + GCD[p - 1, 4]]]; f[6, p_] := If[p == 2, 267, If[p == 3, 504, 3*p^2 + 39*p + 344 + 24*GCD[p - 1, 3] + 11*GCD[p - 1, 4] + 2*GCD[p - 1, 5]]]; f[7, p_] := If[p == 2, 2328, If[p == 3, 9310, If[p == 5, 34297, 3*p^5 + 12*p^4 + 44*p^3 + 170*p^2 + 707*p + 2455 + (4*p^2 + 44*p + 291)*GCD[p - 1, 3] + (p^2 + 19*p + 135)*GCD[p - 1, 4] + (3*p + 31)*GCD[p - 1, 5] + 4*GCD[p - 1, 7] + 5*GCD[p - 1, 8] + GCD[p - 1, 9]]]]; tabl[kk_] := TableForm[Table[f[n, Prime[k+1]], {n, 0, 7}, {k, 0, kk}]];
Formula
Extensions
a(55)=T(10,0) corrected by David Burrell, Jun 07 2022
a(56)=T(9,1) from David Burrell, Sep 01 2023
Comments