cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319171 Square array, read by antidiagonals, upwards: T(n,k) is the number of groups of order prime(k+1)^n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 14, 5, 2, 1, 1, 51, 15, 5, 2, 1, 1, 267, 67, 15, 5, 2, 1, 1, 2328, 504, 77, 15, 5, 2, 1, 1, 56092, 9310, 684, 83, 15, 5, 2, 1, 1, 10494213, 1396077, 34297, 860, 87, 15, 5, 2, 1, 1, 49487367289, 5937876645
Offset: 0

Views

Author

Keywords

Comments

In 1960, Higman conjectured that the function f(n,p) giving the number of groups of prime-power order p^n, for fixed n and varying p, is a "Polynomial in Residue Classes" (PORC), i.e., there exist an integer M and polynomials q_i(x) in Z[x] (i = 1, 2, ..., M) such that if p = i mod M, then f(n,p) = q_i(p). The conjecture is confirmed for n <= 7.

Examples

			Array begins:
  (p = 2) (p = 3) (p = 5) (p = 7) (p = 11) (p = 13) ...
       1       1       1       1        1        1  ...
       1       1       1       1        1        1  ...
       2       2       2       2        2        2  ...
       5       5       5       5        5        5  ...
      14      15      15      15       15       15  ...
      51      67      77      83       87       97  ...
     267     504     684     860     1192     1476  ...
    2328    9310   34297  113147   750735  1600573  ...
     ...
		

Crossrefs

Programs

  • GAP
    # This program computes the first 45 terms, rows 0..8.
    P:=Filtered([1..300],IsPrime);;
    T1:=List([0..7],n->List([0..15],k->NumberSmallGroups(P[k+1]^n)));;
    T2:=[Flat(Concatenation(List([8],n->List([0],k->NumberSmallGroups(P[k+1]^n))),List([1..14],i->0)))];;
    T:=Concatenation(T1,T2);;
    b:=List([2..10],n->OrderedPartitions(n,2));;
    a:=Flat(List([1..Length(b)],i->List([1..Length(b[i])],j->T[b[i][j][2]][b[i][j][1]]))); # Muniru A Asiru, Oct 01 2018
  • Maple
    with(GroupTheory): T:=proc(n,k) NumGroups(ithprime(k+1)^n); end proc: seq(seq(T(n-k,k),k=0..n),n=0..10); # Muniru A Asiru, Oct 03 2018
  • Mathematica
    (* This program uses Higman's PORC functions to compute the rows 0 to 7 *)
    f[0, p_] := 1; f[1, p_] := 1; f[2, p_] := 2; f[3, p_] := 5;
    f[4, p_] := If[p == 2, 14, 15];
    f[5, p_] := If[p == 2, 51, If[p == 3, 67, 61 + 2*p + 2*GCD[p - 1, 3] + GCD[p - 1, 4]]];
    f[6, p_] := If[p == 2, 267, If[p == 3, 504, 3*p^2 + 39*p + 344 + 24*GCD[p - 1, 3] + 11*GCD[p - 1, 4] + 2*GCD[p - 1, 5]]];
    f[7, p_] := If[p == 2, 2328, If[p == 3, 9310, If[p == 5, 34297, 3*p^5 + 12*p^4 + 44*p^3 + 170*p^2 + 707*p + 2455 + (4*p^2 + 44*p + 291)*GCD[p - 1, 3] + (p^2 + 19*p + 135)*GCD[p - 1, 4] + (3*p + 31)*GCD[p - 1, 5] + 4*GCD[p - 1, 7] + 5*GCD[p - 1, 8] + GCD[p - 1, 9]]]];
    tabl[kk_] := TableForm[Table[f[n, Prime[k+1]], {n, 0, 7}, {k, 0, kk}]];

Formula

T(n,0) = A000679(n).
T(n,1) = A090091(n).
T(n,2) = A090130(n).
T(n,3) = A090140(n).
T(0,n) = 1, T(1,n) = 1, T(2,n) = 2 and T(3,n) = 5.
T(4,0) = 14 and T(4,n) = 15, n > 0.
T(5,n) = A232105(n+1).
T(6,n) = A232106(n+1).
T(7,n) = A232107(n+1).

Extensions

a(55)=T(10,0) corrected by David Burrell, Jun 07 2022
a(56)=T(9,1) from David Burrell, Sep 01 2023