A319200 a(n) = -(A(n) - A(n-1)) where A(n) = A057597(n+1), for n >= 0.
0, -1, 2, -1, -2, 5, -4, -3, 12, -13, -2, 27, -38, 9, 56, -103, 56, 103, -262, 215, 150, -627, 692, 85, -1404, 2011, -522, -2893, 5426, -3055, -5264, 13745, -11536, -7473, 32754, -36817, -3410, 72981, -106388, 29997, 149372, -285757, 166382, 268747, -720886, 618521, 371112, -1710519, 1957928, 123703, -3792150
Offset: 0
Examples
The coefficients of t^2, t, 1 for t^(-n) begin, for n >= -3: n t^2 t 1 ----------------- -3 1 1 1 -2 1 0 0 -1 0 1 0 ---------------- +0 0 0 1 +1 1 -1 -1 +2 -1 2 0 +3 0 -1 2 +4 2 -2 -3 +5 -3 5 1 +6 1 -4 4 +7 4 -3 -8 +8 -8 12 5 +9 5 -13 7 10 7 -2 -20 ...
Links
- Index entries for linear recurrences with constant coefficients, signature (-1,-1,1).
Programs
-
Mathematica
LinearRecurrence[{-1,-1,1},{0,-1,2},60] (* Harvey P. Dale, Jul 20 2025 *)
-
PARI
a057597(n) = polcoeff( if( n<0, x / ( 1 - x - x^2 - x^3), x^2 / ( 1 + x + x^2 - x^3) ) + x*O(x^abs(n)), abs(n)) \\ after Michael Somos in A057597 a(n) = -(a057597(n+1)-a057597(n)) \\ Felix Fröhlich, Oct 23 2018
Comments